Before you read this article, take a moment and imagine all the things that the figure above might represent.

I have no doubt that you will come up with several fascinating ideas. However, once the figures are given names and meanings, it is almost impossible to look at them and have the same perception which existed before you knew what it was. The names and meanings fixate you along a certain line of thought.

If I had first described the figure as the rear view of a washerwoman on her hands and knees washing a floor, and then asked you to list alternative explanations, your list would be minimal and much less creative.

A great deal of our education may be regarded as the inculcation of mindsets. We were taught how to handle problems and new phenomena with fixed mental attitudes (based on what past thinkers thought) that pre-determine our response to problems or situations. Consequently, we tend to process information the same way over and over again instead of searching for alternative ways. Once we think we know what works or can be done, it becomes hard for us to consider alternative ideas. We tend to develop narrow ideas and stick with them until proven wrong.

Creative thinking requires the generation of alternative perspectives. One can always look at a system from different levels of abstraction to create different perspectives. A very fine-grained description of a beach would include every position of every grain of sand. Viewed from a higher vantage point, the details become smeared together, the grains become a smooth expanse of brown. At this level of description, different qualities emerge: the shape of the coastline, the height of the dunes, and so on.

In the 1950s, experts believed that the ocean-going freighter was dying. Costs were rising, and it took longer and longer to get merchandise delivered. The shipping industry experts built faster ships that required less fuel and downsized the crew. Costs still kept going up, but the industry kept focusing its efforts on reducing specific costs related to ships while at sea and doing work.

A ship is capital equipment and the biggest cost for the capital equipment is the cost of not working, because interest has to be paid without income being generated to pay for it. Finally, a consultant abstracted the essence of the problem to which is to“reduce costs.” This allowed them to consider all aspects of shipping, including loading and stowing. The innovation that saved the industry was to separate loading from stowing, by doing the loading on land, before the ship is in port. It is much quicker to put on and take off preloaded freight. The answer was the roll-on, roll-off ship and the container ship. Port time has been reduced by three quarters, and with it, congestion and theft. Freighter traffic has increased fivefold since this innovation and costs are down by over 60%.

Abstraction is one of the most basic principles used by creative geniuses to restructure problems so they could look at them in different ways. For instance, the standard procedure in physical science is to make observations or to collect systematic data and to derive principles and theories. Einstein despaired of creating new knowledge from already existing knowledge. How, he thought, can the conclusion go beyond the premises? So, he reversed this procedure and worked at a higher level of abstraction. This bold stance enabled him to creatively examine first principles (e.g., the constancy of speed of light independent of relative motion). The abstractions that others were not willing to accept because they could not be demonstrated by experimentation, Einstein took as his starting premise and simply reasoned from them.

Even Galileo used thought experiments to abstract to a possible world in which a vacuum exists. In this way, he could propose the astounding hypothesis that all objects fall through a vacuum with the same acceleration regardless of their weight. There were no laboratory vacuums large enough to demonstrate this spectacular idea until years after Galileo’s death. Today, this demonstration is standard fare in many science museums, where there are two evacuated columns in which a brick and feather released at the same moment fall side by side and hit the floor together.

Consider the incredible opportunity that the U.S. Postal Service and UPS both missed by failing to create an “overnight” delivery service. Their entire focus was on using established systems and theories to create the service. If, for instance, using the established system you want to connect one hundred markets with one another, and if you do it all with direct point-to-point deliveries, it will take one hundred times ninety-nine — or 9,900 — direct deliveries. They failed to look for alternative ideas and simply concluded that the cost was prohibitive. There was no way they could make it economically feasible.

It took an individual who looked at the problem in a different way to solve the problem. After a tour of duty with the Marines in Vietnam, Fred Smith returned home in 1971 to find that computers were becoming an indispensable part of doing business and delivery systems were not keeping up with the increased demand for speed and reliability when delivering computer parts. Fred abstracted the problem from delivery services to one of “movement.” How do things move?

He thought about how information is moved, and how banks move money around the world. Both information systems and banks, he discovered, put all points in a network and connect them through a central hub. He decided to create a delivery system — Federal Express, now known as FedEx — that operates essentially the way information and bank clearinghouses do. He realized that a hub-and-spoke network could create an enormous number of connections more efficiently than a point-to-point delivery system. The delivery system he conceived used both airplanes and trucks, which was unheard of at the time. His system was 100 times more efficient than existing systems at the time and was subsequently employed in, of course, all air cargo delivery systems in the airline industry.

Robert Dilts, an expert in Neuro Linguistic Programming (NLP), wrote about an enlightening experiment which was done by gestalt psychologists with a group of dogs in Anchor Point Magazine. The dogs were trained to approach something when shown a “white” square and avoid it when shown a “gray” square. When the dogs learned this, the experimenters switched to using a gray square and a black square. The dogs immediately shifted to approaching the object in response to the gray square (which had previously triggered avoidance), and avoiding the object when shown the black square (which had not been conditioned to anything). Rather than perceive the gray as an absolute stimulus, the dogs were responding to the deeper essence of “lighter versus darker” as opposed to gray, white or black being properties.

You can train a human to approach something when shown a “white” square and avoid it when shown a “gray” square. When the squares are switched to gray and black, the human will still avoid the “gray” square. Once gray has been defined in our minds, we see the gray as independent and entirely self-contained. This means nothing can interact with it or exert an influence on it. It, in fact, becomes an absolute. We have lost the sensitivity to deeper relationships, functions, and patterns because we are educated to focus on the particulars of experience as opposed to the universals. We see them as independent parts of an objective reality.

All of the experts in the Postal Service and UPS were unable to conceive of alternatives to what existed because they focused on the particulars of existing delivery systems. Fred Smith’s abstraction of the problem from delivery systems to “movement” allowed him to make the relationship between moving money to moving air freight.

Consider the example of George de Mestral, a Swiss inventor who wanted to improve the ordinary zipper. George was a creative thinker who always looked at problems with many different perspectives. When he studied the zipper, he decided the essence of a zipper is to fasten things. He thought how do things fasten in the world? He wondered how do windows fasten together, how does a bird fasten its nest to a branch, how do wasps fasten their hives, how do stamps fasten on letters, how do geckos fasten themselves to walls and so on). One day he took his dog for a nature hike. They both returned covered with burrs, the plant like seed-sacs that cling to animal fur in order to travel to fertile new planting grounds.

He made the “Aha” connection between burrs and zippers when he examined it to discover tiny hooks which enabled the seed-bearing burr to cling so viciously to the tiny loops in the fabric of his pants. The key feature of George de Mistrals’ thinking was his conceptual connection between patterns of a burr and patterns of a zipper.

George bounced back and forth among ideas guessing as to what works and what doesn’t. By “guessing,” what I mean is that he had to take different perspectives as to what aspects of “burr” and “zipper” patterns matter, and what doesn’t. Perhaps shapes count, but not textures–or vice versa. Perhaps orientation count, but not sizes–or vice versa. Perhaps curvature or its lack counts and so on until he got it. He invented a two-sided fastener (two-sided like a zipper), one side with stiff hooks like the burrs and the other side with soft loops like the fabric of his pants. He called his invention “Velcro,” which is itself a combination of the word velour and crochet.

When you are searching for ideas, try the technique of abstraction. Think about your subject and decide the universal principle or essence of the subject. Suppose, for example, you want to invent a new can opener: You might decide that the essence of a can opener is “opening things.” Then spend time thinking about how things open in different domains. In nature, for example, pea pods open by ripening. Ripening weakens the seams and the pea pod opens. This inspires the idea of “opening a can by pulling a weak seam (like a pea pod). Instead of an idea to improve the can opener, we produced an idea for a new can design. A can with a weak seam beneath the cover that the user pulls to remove the cover.

This is why if you want to produce something creative, say a creative design for a new automobile, don’t think of an automobile — at least not at first. There is much suggestive evidence that a process of accessing a more abstract definition of a problem can lead to greater creativity and innovation than the more typical ways.

This is the creative strategy of some of the world’s leading creative designers, including Kenton Wiens, architect Arthur Ericson, and Martin Skalski, director of the transportation design sequence at Pratt Institute. Skalski, for example, doesn’t tell students to design an automobile or study various automobile designs on the market. Instead, he begins the design process by having them draw abstract compositions of things in motion. Then by progressively making the process less abstract, he eventually has them working on the real problem (designing automobiles) tying in the connections between the abstract work and the final model.

Suppose you want to improve the design of the umbrella. If you work with the more abstract definition “protection from the rain,” you are more likely to explore more possibilities including raincoats or even a new type of town design where there are arcades everywhere and umbrellas are no longer required. Or, consider the bookstore owner, for example, who viewed himself as a seller of books, a very specific idea. The trend toward the electronic media put him out of business. On the other hand, if he had viewed himself as a provider of information and entertainment, a more abstract characterization, a switch in the medium would not have been threatening, and it would have opened new opportunities.


(1) Describe an abstract definition of your problem. What is the principle of the problem? What is its essence?
EXAMPLE: Our problem is how to protect rural designer mailboxes from theft and vandalism. The principle is protection.

(2) Brainstorm for ideas on protection generally. Generate a number of different ideas.
EXAMPLE: Think of general ways to protect things.
Place in a bank.
Rustproof it.
Provide good maintenance.
Get an insurance policy.
Hide it.

(3) Restate the problem so that it is slightly less abstract. Again, generate as many solutions as you can.
EXAMPLE: Think of ways to protect things that are outside and vulnerable.
Hire a guard.
Watch it constantly.
Drape it with camouflage.
Put a fence around it.
Keep it well lighted.

(4) Consider the real problem. Use your two abstraction processes’ ideas and solutions as stimuli to generate solutions.
EXAMPLE: The real problem is how to protect rural mailboxes from theft and vandalism. The idea triggered from “get an insurance policy” is to offer an insurance policy to owners of rural mailboxes: $5 a year or $10 for three years to cover the mailbox from theft or destruction.
IMAGINEERED IDEA: By following this approach, progressively stating a problem in less abstract ways, you will eventually be working on a solution to the real problem. The diminishing abstraction of each process guides your focus to the real problem, and its eventual solution.

Learn the creative thinking techniques you need to get the original and novel ideas you need to improve your business and personal lives. Explore the books and publications of Michael Michalko. http://creativethinking.net/#sthash.SXV5T2cu.dpbs

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: