Posts Tagged ‘articles’




Attribute analysis breaks our propensity to operate at the highest level of generalization. Often, if we consider the attributes of people, things, situations, etc., we come to different conclusions than if we operate within our stereotypes.

We usually describe an object by listing its function. The way we see something is not inherent in the object itself — it grows out of experience and observation. A screwdriver’s primary function is to tighten or loosen screws. To discover new applications and ideas, you need flexibility of thought. An easy way to encourage this kind of thinking is to list the attributes or components of the subject instead of concentrating on its function. For example, let’s suppose you want to improve the screwdriver.

(1) First, list the attributes of a screwdriver.
For Example:

Round steel shaft

Wooden or plastic handle

Wedge-shaped tip

Manually operated

Used for tightening or loosening screws
(2) Next, focus on each specific attribute and ask “How else can this be accomplished?” or “Why does this have to be this way?”
Ask yourself:

What can I substitute for this attribute?

What can be combined with it?

Can I adapt something to it?

Can I add or magnify it?

Can I modify it in some fashion?

Can I put it to some other use?

What can I eliminate?

Can the parts be rearranged?

What is the reverse of this?
(3) Following are a few recent patented screwdriver innovations. The innovations were created by creative thinkers focusing on separate attributes of the screwdriver such as the handle, power source, and the shaft.

Focusing on the handle, a Swedish company created a handle with space for both hands. It was so successful, they later developed a full range of tools with a long handles.

In the Third World, an aspiring inventor added a battery to provide power. This power source proved to be more reliable than electricity.

An entrepreneur came up with a better arrangement. He created shafts that were made interchangeable to fit various size screws, which obviated the need to have several screwdrivers.

A Japanese engineer invented a bendable electric screwdriver with a super-flexible shaft to reach out of the way places.
Considering the attributes of something rather than its function, provides you with a different perspective. Different perspectives create different questions which place your subject into different contexts. Years back, the Jacuzzi brothers designed a special whirlpool bath to give one of their cousins hydrotherapy treatment for arthritis. This was a new product for the Jacuzzi brothers who were in the farm pump business. They marketed the tub to other victims of arthritis but sold very few. Years later, Roy Jacuzzi put the concept into a different context (the luxury bath market) by asking, “Can I put this particular hydrotherapy treatment to some other use?” and bathrooms were never the same.

Michael Michalko



First, please take a few moments to complete the following experiment before you read this article. Using the first finger of your dominant hand, please trace the capital letter “Q” on your forehead. There are only two ways of doing this experiment. You can trace the letter “Q” on your forehead with the tail of Q toward your right eye or you draw it with the tail toward your left eye. Some people draw the letter 0 in such a way that they themselves can read it; that is, they place the tail of the Q on the right-hand side of the forehead. Others draw the letter in a way that can be read by someone facing them, with the tail of the 0 on the left side of the forehead.


What an odd thing to ask someone to do. This is an exercise that was popularized by University of Hertfordshire psychologist Richard Wiseman who concentrates on discovering big truths in small things. For instance, Wiseman explains that the Q test is a quick measure of “self-monitoring” which is a theory that deals with the phenomena of expressive controls. Human beings generally differ in substantial ways in their abilities and desires to engage in expressive controls.

Fixed mindset. People who draw the letter Q with the tail slanting toward their left so that someone facing them can read it tend to focus outwardly. Wiseman describes them as high self monitors. Their primary concern is “looking good” and “looking smart.” They are concerned with how other people see them, are highly responsive to social cues and their situational context. Psychologist Carol Dweck describes such people as having a “fixed” mindset. Some of the characteristics of people with a fixed mindset are:


  • They have a fixed mindset about their abilities and the abilities of others. E.g., all talent is innate and static. You are either born intelligent or you are not. They do not believe people can change and grow.
  • They enjoy being the center of attention and adapt their actions to suit the situation. Ability is something inherent that needs to be demonstrated.
  • They are also skilled at manipulating the way others see them, which makes them good at deception and lying.
  • They offer external attributions for failures. They are never personally responsible for mistakes or failures. To them, admitting you failed is tantamount to admitting you’re worthless.
  • They are performance oriented and will only perform tasks that they are good at. For them, each task is a challenge to their self-image, and each setback becomes a personal threat. So they pursue only activities at which they’re sure to shine—and avoid the sorts of experiences necessary to grow and flourish in any endeavor.
  • From a fixed mindset perspective, if you have to work hard at something, or you learn it slowly, you aren’t good at it, and are not very smart. Performance is paramount. They want to look smart even if it means not learning a thing in the process.

Growth mindset. People who draw the letter Q with the tail slanting toward the right so they can read it tend to focus inwardly. In contrast, low self-monitors come across as being the “same person” in different situations. Their behavior is guided more by their inner feelings and values, and they are less aware of their impact on those around them. They also tend to lie less in life, and so not be so skilled at deceit.” Carol Dweck would describe such people as having a “growth” mindset.


Among the characteristics of people with a growth mindset are:

  • They tend to exhibit expressive controls congruent with their own internal states; i.e. beliefs, attitudes, and dispositions regardless of social circumstance.
  • They are often less observant of social context and consider expressing a self-presentation dissimilar from their internal states as a falsehood and undesirable.
  • They are generally oblivious to how others see them and hence march to their own different drum.
  • They believe the brain is dynamic and develops over time by taking advantage of learning opportunities and overcoming adversity.
  • They offer internal attributions to explain things by assigning causality to factors within the person. An internal explanation claims that the person was directly responsible for the event.
  • They take necessary risks and don’t worry about failure because each mistake becomes a chance to learn.
  • The growth mindset is associated with greater confidence, risk-taking, and higher academic and career success over time. Ability can be developed.
  • High achievement comes from hard work, dedication and persistence to meet a goal.

“If you want to demonstrate something over and over, it feels like something static that lives inside of you—whereas if you want to increase your ability, it feels dynamic and malleable,” Carol Dweck explains. People with fixed mindsets think intelligence is fixed from birth. People with learning goals have a growth mind-set about intelligence, believing it can be developed.

In one notable experiment, Dweck gave a class of preadolescent students a test filled with challenging problems. After they were finished, one group was praised for its effort and another group was praised for its intelligence. Those praised for their intelligence were reluctant to tackle difficult tasks, and their performance on subsequent tests soon began to suffer.

Then Dweck asked the children to write a letter to students at another school, describing their experience in the study. She discovered something remarkable: 40 percent of those students who were praised for their intelligence lied about how they had scored on the test, adjusting their grade upward. They weren’t naturally deceptive people, and they weren’t any less intelligent or self-confident than anyone else. They simply did what people do when they are immersed in an environment that celebrates them solely for their innate “talent.” They begin to define themselves by that description, and when times get tough and that self-image is threatened, they have difficulty with the consequences. Politicians and businesspeople with fixed mindsets will not stand up to investors and the public and admit that they were wrong. They’d sooner lie then confess up to problems and work to fix them.

Michelangelo’s mindset. A great example of a growth mindset is the mindset of Michelangelo. When Michelangelo turned 13-years old, he enraged his father when he told that he had agreed to apprentice in the workshop of the painter Domenico Ghirlandaio. His father believed artists were menial laborers beneath their social class. Michelangelo defied his father and learned art and then went on to study at the sculpture school in the Medici gardens. During the years he spent in the Garden of San Marco, Michelangelo became interested in human anatomy. At the time, studying corpses was strictly forbidden by the church. You were threatened with damnation and excommunication. He overcame this problem by making a wooden Crucifix with a detail of Christ’s face and offered it as a bribe to Niccolò Bichiellini, the prior of the church of Santo Spirito, in exchange for permission to secretly study corpses.

Michelangelo’s masterpiece, David, revealed his ability to do what others could not: if other artists required special marble and ideal conditions, he could create a masterpiece from whatever was available, including marble already hopelessly mangled by others. Back in 1463, the authorities of the cathedral of Florence acquired a sixteen-foot-high chunk of white marble to be carved into a sculpture. Two well-known sculptors worked on the piece and gave up, and the mangled block was put in storage. They did not want to admit to failure. Forty years later, Michelangelo took what was left of the marble and sculpted David, the world’s most famous sculpture, within eighteen months.

Michelangelo’s competitors persuaded Junius II to assign to him a relatively obscure and difficult project. It was to fresco the ceiling of a private chapel. The chapel had already been copiously decorated with frescoes by many talented artists. Michelangelo would be commissioned to decorate the tunnel-vaulted ceiling. In this way, his rivals thought they would divert his energies from sculpture, in which they realized he was supreme. This, they argued, would make things hopeless for him, since he had no experience of coloring in fresco he would certainly, they believed, do less creditable work as a painter. Without doubt, they thought, he would be compared unfavorably with Raphael, and even if he refused to do it, he’d make the Pope angry and suffer the consequences. Thus, one way or another, they would succeed in their purpose of getting rid of him.

In every way it was a challenging task. He had rarely used color, nor had he painted in fresco. He worked hard and long at studying and experimenting with colors and in fresco. When ready, he executed the frescos in great discomfort, having to work with his face looking upwards, which impaired his sight so badly that he could not read or look at drawings save with his head turned backwards, and this lasted for several months. In that awkward curved space, Michelangelo managed to depict the history of the Earth from the Creation to Noah, surrounded by ancestors and prophets of Jesus and finally revealing the liberation of the soul. His enemies had stage managed the masterpiece that quickly established him as the artist genius of the age.

Michelangelo is a wonderful example of a person with a growth mindset. He ignored his father and marched to his own drum to become an artist; overcame the church’s adversity to studying corpses, took the risk of sculpting mangled marble into the world’s finest sculpture; and with hard work, dedication and persistence, painted the ceiling of the Sistine chapel.
To learn more about the creative thinking habits of Michelangelo and other creative geniuses read Michael Michalko’s Cracking Creativity (Secrets of Creative Genius).



Solve the following thought experiment before you read the rest. Imagine you have a brother. Your father has passed away, and he has left you an inheritance with three assets. The assets are represented symbolically by three coins. Your instructions are that you must share the inheritance fairly but you cannot split any of the assets. Now you must try to find a creative solution that will get you the maximum possible benefit. What is your solution?





A Franciscan monk who was a speaker at an international seminar about world peace, was asked if successful negotiations between Israel and Palestine were possible. He called two young people up to the microphone: a Palestinian young man and a Jewish Israeli young man. He placed three gold coins on the podium and asked them how they would share the inheritance.

When the Palestinian said he would take two coins and give the Israeli one, everyone laughed  and the monk said, “Well, okay, you have the power to do that, but you are sowing the seeds of conflict.” The Israeli said he was actually thinking of taking one coin and giving the Palestinian two. “Evidently,” the monk guessed, “you feel it’s worth the risk of investing in your adversary in this way, and hope to somehow benefit in the future from this.” The boys sat down.

Next, the monk asked two young women (again one was Israeli, the other Palestinian) to repeat the exercise. It was fairly clear where the monk was going with this, but would the girls get it? “I would keep one coin and give her two,” said the Israeli young woman, “on condition that she donate her second one to a charity, maybe a children’s hospital.” “Good,” said the monk and asked the Palestinian woman if she agreed. She said “I would keep one for myself, and give one to her, and say that we should invest the third one together.” The entire audience stood and applauded.

Negotiating is not a game, and it’s not a war, it’s what civilized people do to iron out their differences. There is no point, the monk said, in figuring out how to get the other side to sign something they cannot live with. A negotiated settlement today is not the end of the story, because “there is always the day after,” and a good negotiator should be thinking about the day after, and the day after that.

Learn how to become creative in your business and personal lives.



milkYears ago, a young boy, Tom Mitchell who was selling goods from door to door to pay his way through school, found he had only one dime left, and he was hungry. He decided he would ask for a meal at the next house. However, he lost his nerve when a lovely young woman opened the door.

Instead of a meal he asked for a drink of water. She thought he looked hungry so brought him a large glass of milk.

He drank it slowly, and then asked, “How much do I owe you?”
“You don’t owe me anything,” she replied. “Mother has taught us never to accept pay for a kindness.”
He said, “Then I thank you from my heart.”

As Tom left that house, he not only felt stronger physically, but his faith in God and man was strong also. He had been ready to give up and quit.

Year’s later that young woman became critically ill. The local doctors were baffled. They finally sent her to the big city, where they called in specialists to study her rare disease.

Dr. Tom Mitchell was called in for the consultation. When he heard the name of the town she came from, a strange light filled his eyes. Immediately he rose and went down the hall of the hospital to her room.

Dressed in his doctor’s gown he went in to see her. He recognized her at once. He went back to the consultation room determined to do his best to save her life. From that day he gave special attention to the case.

After a long struggle, the battle was won. Dr. Mitchell requested the business office to pass the final bill to him for approval. He looked at it, then wrote something on the edge and the bill was sent to her room.

She feared to open it, for she was sure it would take the rest of her life to pay for it all. Finally she looked, and something caught her attention on the side of the bill. She began to read the following words:Paid in full with one glass of milk.
Signed, Dr. Thomas Mitchell

Michael Michalko





A Special Operations officer, told me a story about a Special Forces soldier who was captured by the North Vietnamese during the Viet Nam war. There was a bounty for the heads of all Special Forces personnel who participated in operation Phoenix at the time and the soldier figured his life was over.

He was trussed up and tortured. He knew if he kept to the hard line of name, rank and serial number he was dead. He then did something extraordinary. He changed his mental state by repeating a general statement continuously. During special forces training, he learned to repeat the sentence “Day by day, in every way, I’m getting stronger and stronger” twenty times, three times a day. He discovered that a simple mental thought repeated continuously occupies the mind exclusively and changes your mental state and behavior. He decided to use the same exercise.

The sentence he used during his captivity was “Moment by moment, in every way, I am becoming Christ and loving and understanding my enemy more and more.” At first, he was highly conflicted and hated his enemy. This caused a great deal of cognitive dissonance. He knew he couldn’t change his circumstance, so he knew he had to change himself. And he said eventually he believed what he was saying and it showed in his eyes and body language. He became what he pretended to be. He became like Christ.

As they tortured him, he told them he loved them, that he understood why they were torturing him and why they would kill him. He told them not to feel guilty about what they were doing to him because he understood and loved them and prayed for them.

At first, his torturers were highly amused and continued to torture him. But It’s hard to hate and torture someone who seems to genuinely love and understand you, so, over time, the North Vietnamese became confused and gradually the torture stopped. Then they began to feed him and heal his wounds. They kept his connection to the Phoenix secret so he wouldn’t be executed by their superiors. They became his friend instead of his enemy. They protected him until the end of the war. Now, after he was repatriated, he visits his former captors every three years in Hanoi to laugh and joke about their wartime experiences and celebrate life.

He became what he pretended to be.



Give the Gift of Imagination




Creativity consists of seeing what no one else is seeing, to think what no one else is thinking, and doing what others had wish they had done. Become creative. Here is what you need:



How Geniuses Think


How do geniuses come up with ideas? What is common to the thinking style that produced “Mona Lisa,” as well as the one that spawned the theory of relativity? What characterizes the thinking strategies of the Einsteins, Edisons, daVincis, Darwins, Picassos, Michelangelos, Galileos, Freuds, and Mozarts of history? What can we learn from them?

For years, scholars and researchers have tried to study genius by giving its vital statistics, as if piles of data somehow illuminated genius. In his 1904 study of genius, Havelock Ellis noted that most geniuses are fathered by men older than 30; had mothers younger than 25 and were usually sickly as children. Other scholars reported that many were celibate (Descartes), others were fatherless (Dickens) or motherless (Darwin). In the end, the piles of data illuminated nothing.

Academics have also tried to measure the links between intelligence and genius. But intelligence is not enough. Marilyn vos Savant, whose IQ of 228 is the highest ever recorded, has not exactly contributed much to science or art. She is, instead, a question-and-answer columnist for Parade magazine. Run-of-the-mill physicists have IQs much higher than Nobel Prize winner Richard Feynman, who many acknowledge to be the last great American genius (his IQ was a merely respectable 122).

Genius is not about scoring 1600 on the SATs, mastering fourteen languages at the age of seven, finishing Mensa exercises in record time, having an extraordinarily high I.Q., or even about being smart. After considerable debate initiated by J. P. Guilford, a leading psychologist who called for a scientific focus on creativity in the sixties, psychologists reached the conclusion that creativity is not the same as intelligence. An individual can be far more creative than he or she is intelligent, or far more intelligent than creative.

Most people of average intelligence, given data or some problem, can figure out the expected conventional response. For example, when asked, “What is one-half of 13?” most of us immediately answer six and one-half. You probably reached the answer in a few seconds and then turned your attention back to the text.

Typically, we think reproductively, that is on the basis of similar problems encountered in the past. When confronted with problems, we fixate on something in our past that has worked before. We ask, “What have I been taught in life, education or work on how to solve the problem?” Then we analytically select the most promising approach based on past experiences, excluding all other approaches, and work within a clearly defined direction towards the solution of the problem. Because of the soundness of the steps based on past experiences, we become arrogantly certain of the correctness of our conclusion.

In contrast, geniuses think productively, not reproductively. When confronted with a problem, they ask “How many different ways can I look at it?”, “How can I rethink the way I see it?”, and “How many different ways can I solve it?” instead of “What have I been taught by someone else on how to solve this?” They tend to come up with many different responses, some of which are unconventional and possibly unique. A productive thinker would say that there are many different ways to express “thirteen” and many different ways to halve something. Following are some examples.


13 = divided with a vertical line between the one and three = 1 and 3

THIR TEEN = 4 letters in each half.

XIII = split in half XI/II = gives you 11 and 2 in Roman numerals.

Or XIII divided in half horizontally gives you = 8 or VIII in Roman numerals.

(Note: As you can see, in addition to six and one half, by expressing 13 in different ways and halving it in different ways, one could say one-half of thirteen is 6.5, or 1 and 3, or 4, or 11 and 2, or 8, and so on.)

With productive thinking, one generates as many alternative approaches as one can. You consider the least obvious as well as the most likely approaches. It is the willingness to explore all approaches that is important, even after one has found a promising one. Einstein was once asked what the difference was between him and the average person. He said that if you asked the average person to find a needle in the haystack, the person would stop when he or she found a needle. He, on the other hand, would tear through the entire haystack looking for all the possible needles.

How would you describe the pattern in the following illustration? Most people see the pattern as a square composed of smaller squares or circles or as alternate rows of squares and circles.

dots and squares

It cannot be easily seen as columns of alternate squares and circles. Once it’s pointed out that it can also be viewed as columns of alternate squares and circles, we, of course, see it. This is because we have become habituated to passively organize similar items together in our minds. Geniuses, on the other hand, subvert habituation by actively looking for alternative ways to look at things and alternative ways to think about them. Whenever Noble prize winner Richard Feynman was stuck on a problem he would invent new thinking strategies. He felt the secret to his genius was his ability to disregard how past thinkers thought about problems and, instead, would invent new ways to think. He was so “unstuck” that if something didn’t work, he would look at it several different ways until he found a way that moved his imagination. He was wonderfully productive.

Feynman proposed teaching productive thinking in our educational institutions in lieu of reproductive thinking. He believed that the successful user of mathematics is an inventor of new ways of thinking in given situations. He believed that even if the old ways are well known, it is usually better to invent your own way or a new way than it is to look it up and apply what you’ve looked up.

The problem 29 + 3 is considered a third-grade problem, because it requires the advanced technique of carrying; yet Feynman pointed out that a first grader could handle it by thinking 30, 31, 32. A child could mark numbers on a line and count off the spaces — a method that becomes useful in understanding measurements and fractions. One can write larger numbers in columns and carry sums larger than 10. Use fingers or algebra (2 times what plus 3 is 7?). He encouraged the teaching of an attitude where people are taught to figure out how to think about problems many different ways using trial and error.

Reproductive thinking fosters rigidity of thought. This is why we so often fail when confronted with a new problem that is similar to past experiences only in superficial ways, or on the surface, and is different from previously encountered problems in its deep structure. Interpreting such a problem through the prism of past experience will, by definition, lead the thinker astray. Reproductive thinking leads us to the usual ideas and not to original ones. If you always think the way you’ve always thought, you’ll always get what you’ve always got — the same old, same old ideas.

In 1968, the Swiss dominated the watch industry. The Swiss themselves invented the electronic watch movement at their research institute in Neuchatel, Switzerland. It was rejected by every Swiss watch manufacturer. Based on their past experiences in the industry, they believed this couldn’t possibly be the watch of the future. After all, it was battery powered, did not have bearings or a mainspring and almost no gears. Seiko took one look at this invention that the Swiss manufacturers rejected at the World Watch Congress that year and took over the world watch market. When Univac invented the computer, they refused to talk to business people who inquired about it, because they said the computer was invented for scientists and had no business applications. Then along came IBM. IBM, itself, once said that according to their past experiences in the computer market, there is virtually no market for the personal computer. In fact, they said they were absolutely certain there were no more than five or six people in the entire world who had need for a personal computer. And along came Apple.

In nature, a gene pool that is totally lacking in variation would be totally unable to adapt to changing circumstances. In time, the genetically encoded wisdom would convert to foolishness, with consequences that would be fatal to the species’ survival. A comparable process operates within us as individuals. We all have a rich repertoire of ideas and concepts based on past experiences that enable us to survive and prosper. But without any provision for the variation of ideas, our usual ideas become stagnate and lose their advantages and in the end, we are defeated in our competition with our rivals. Consider the following:

  • In 1899 Charles Duell, the Director of the U.S. Patent Office, suggested that the government close the office because everything that can be invented has been invented.
  • In 1923, Robert Millikan, noted physicist and winner of the Noble Prize, said there is absolutely no likelihood that man can harness the power of the atom.
  • Phillip Reiss, a German, invented a machine that could transmit music in 1861. He was days away from inventing the telephone. Every communication expert in Germany persuaded him there was no market for such a device as the telegraph was good enough. Fifteen years later, Alexander Graham Bell invented the telephone and became a multi-millionaire with Germany as his first most enthusiastic customer.
  • Chester Carlson invented xerography in 1938. Virtually every major corporation, including IBM and Kodak, scoffed at his idea and turned him down. They claimed that since carbon paper was cheap and plentiful, who in their right mind would buy an expensive copier.
  • Fred Smith, while a student at Yale, came up with the concept of Federal Express, a national overnight delivery service. The U.S. Postal Service, UPS, his own business professor, and virtually every delivery expert in the U.S., doomed his enterprise to failure. Based on their experiences in the industry, no one, they said, will pay a fancy price for speed and reliability.
  • When Charles Darwin returned to England after he visited the Galapagos, he distributed his finch specimens to professional zoologists to be properly identified. One of the most distinguished experts was John Gould. What was the most revealing was not what happened to Darwin, but what had not happened to Gould.Darwin’s notes show Gould taking him through all the birds he has named. Gould kept going back and forth about the number of different species of finches: the information is there, but he doesn’t quite know what to make of it. He assumed that since God made one set of birds when he created the world, the specimens from different locations would be identical. It never occurred to him to look for differences by location. Gould thinks that the birds are so different that they are distinct species.What is remarkable about the encounter is the completely different impact it has on the two men. Gould thought the way he has been conditioned to think, like an expert taxonomist, and didn’t see the textbook case of evolution that unfolded right before him with the finches. Darwin didn’t even know they were finches. The person with the intelligence, knowledge and the expertise didn’t see it, and the person with far less knowledge and expertise comes up with an idea that shapes the way we think about the world.

I have always been impressed by Darwin’s theory of evolution by natural selection and have become fascinated with scholastic attempts to apply Darwinian ideas to creativity and genius. My own outlook about genius has roots in Donald Campbell’s blind-variation and selective-retention model of creative thought which he published in 1960. Campbell was not the first to see the connection between Darwinian ideas on evolution and creativity. As early as 1880, the great American philosopher, William James, in his essay “Great Men, Great Thoughts, and the Environment,” made the connection between Darwinian ideas and genius. Campbell’s work has since been elaborated on by a number of scholars including Dean Keith Simonton and Sarnoff Mednick. The work of these and many other scholars suggests that genius operates according to Darwin’s theory of biological evolution. Nature is extraordinarily productive. Nature creates many possibilities through blind “trial and error” and then lets the process of natural selection decide which species survive. In nature, 95% of new species fail and die within a short period of time.

Genius is analogous to biological evolution in that it requires the unpredictable generation of a rich diversity of alternatives and conjectures. From this variety of alternatives and conjectures, the intellect retains the best ideas for further development and communication. An important aspect of this theory is that you need some means of producing variation in your ideas and for this variation to be truly effective, it must be “blind.” Blind variation implies a departure from reproductive (retained) knowledge.

How do creative geniuses generate so many alternatives and conjectures? Why are so many of their ideas so rich and varied? How do they produce the “blind” variations that lead to the original and novel? A growing cadre of scholars are offering evidence that one can characterize the way geniuses think. By studying the notebooks, correspondence, conversations and ideas of the world’s greatest thinkers, they have teased out particular common thinking strategies and styles of thought that enabled geniuses to generate a prodigious variety of novel and original ideas.


Following are thumbnail descriptions of strategies that are common to the thinking styles of creative geniuses in science, art and industry throughout history.

GENIUSES LOOK AT PROBLEMS IN MANY DIFFERENT WAYS. Genius often comes from finding a new perspective that no one else has taken. Leonardo daVinci believed that to gain knowledge about the form of problems, you begin by learning how to restructure it in many different ways. He felt the first way he looked at a problem was too biased toward his usual way of seeing things. He would restructure his problem by looking at it from one perspective and move to another perspective and still another. With each move, his understanding would deepen and he would begin to understand the essence of the problem. Einstein’s theory of relativity is, in essence, a description of the interaction between different perspectives. Freud’s analytical methods were designed to find details that did not fit with traditional perspectives in order to find a completely new point of view.

In order to creatively solve a problem, the thinker must abandon the initial approach that stems from past experience and re-conceptualize the problem. By not settling with one perspective, geniuses do not merely solve existing problems, like inventing an environmentally-friendly fuel. They identify new ones. It does not take a genius to analyze dreams; it required Freud to ask in the first place what meaning dreams carry from our psyche.

GENIUSES MAKE THEIR THOUGHTS VISIBLE. The explosion of creativity in the Renaissance was intimately tied to the recording and conveying of a vast knowledge in a parallel language; a language of drawings, graphs and diagrams — as, for instance, in the renowned diagrams of daVinci and Galileo. Galileo revolutionized science by making his thought visible with diagrams, maps, and drawings while his contemporaries used conventional mathematical and verbal approaches.

Once geniuses obtain a certain minimal verbal facility, they seem to develop a skill in visual and spatial abilities which give them the flexibility to display information in different ways. When Einstein had thought through a problem, he always found it necessary to formulate his subject in as many different ways as possible, including diagrammatically. He had a very visual mind. He thought in terms of visual and spatial forms, rather than thinking along purely mathematical or verbal lines of reasoning. In fact, he believed that words and numbers, as they are written or spoken, did not play a significant role in his thinking process.

One of the most complete descriptions of Einstein’s philosophy of science was found in a letter to his friend, Maurice Solovine. In the letter, Einstein explained the difficulty of attempting to use words to explain his philosophy of science, because as he said, he thinks about such things schematically. The letter started with a simple drawing consisting of (1) straight line representing E (experiences), which are given to us, and (2) A (axioms), which are situated above the line but were not directly linked to the line.

three point image

Einstein explained that psychologically, the A rests upon the E. There exists, however, no logical path from E to A, but only an intuitive connection, which is always subject to revocation. From axioms, one can deduce certain deductions (S), which deductions may lay claim to being correct. In essence, Einstein was saying that it is the theory that determines what we observe. Einstein argued that scientific thinking is speculative, and only in its end product does it lead to a system that is characterized as “logical simplicity.” Unable to satisfactorily describe his thoughts in words, Einstein made his thought visible by diagramming his philosophy’s main features and characteristics.

GENIUSES PRODUCE. A distinguishing characteristic of genius is immense productivity. Thomas Edison held 1,093 patents, still the record. He guaranteed productivity by giving himself and his assistants idea quotas. His own personal quota was one minor invention every 10 days and a major invention every six months. Bach wrote a cantata every week, even when he was sick or exhausted. Mozart produced more than six hundred pieces of music. Einstein is best known for his paper on relativity, but he published 248 other papers. T. S. Elliot’s numerous drafts of “The Waste Land” constitute a jumble of good and bad passages that eventually was turned into a masterpiece. In a study of 2,036 scientists throughout history, Dean Kean Simonton of the University of California, Davis found that the most respected produced not only great works, but also more “bad” ones. Out of their massive quantity of work came quality. Geniuses produce. Period.

GENIUSES MAKE NOVEL COMBINATIONS. Dean Keith Simonton, in his 1989 book Scientific Genius, suggests that geniuses are geniuses because they form more novel combinations than the merely talented. His theory has etymology behind it: cogito — “I think — originally connoted “shake together”: intelligo the root of “intelligence” means to “select among.” This is a clear early intuition about the utility of permitting ideas and thoughts to randomly combine with each other and the utility of selecting from the many the few to retain. Like the highly playful child with a pail full of Legos, a genius is constantly combining and recombining ideas, images and thoughts into different combinations in their conscious and subconscious minds. Consider Einstein’s equation, E=mc2. Einstein did not invent the concepts of energy, mass, or speed of light. Rather, by combining these concepts in a novel way, he was able to look at the same world as everyone else and see something different. The laws of heredity on which the modern science of genetics is based are the results of Gregor Mendel who combined mathematics and biology to create a new science.

GENIUSES FORCE RELATIONSHIPS. If one particular style of thought stands out about creative genius, it is the ability to make juxtapositions between dissimilar subjects. Call it a facility to connect the unconnected that enables them to see things to which others are blind. Leonardo daVinci forced a relationship between the sound of a bell and a stone hitting water. This enabled him to make the connection that sound travels in waves. In 1865, F. A. Kekule’ intuited the shape of the ring-like benzene molecule by forcing a relationship with a dream of a snake biting its tail. Samuel Morse was stumped trying to figure out how to produce a telegraphic signal enough to be received coast to coast. One day he saw tied horses being exchanged at a relay station and forced a connection between relay stations for horses and  signals. The solution was to give the traveling signal periodic boosts of power. Nickla Tesla forced a connection between the setting sun and a motor that made the AC motor possible by having the motor’s magnetic field rotate inside the motor just as the sun (from our perspective) rotates.

GENIUSES THINK IN OPPOSITES. Physicist and philosopher David Bohm believed geniuses were able to think different thoughts because they could tolerate ambivalence between opposites or two incompatible subjects. Dr. Albert Rothenberg, a noted researcher on the creative process, identified this ability in a wide variety of geniuses including Einstein, Mozart, Edison, Pasteur, Joseph Conrad, and Picasso in his 1990 book, The Emerging Goddess: The Creative Process in Art, Science and Other Fields. Physicist Niels Bohr believed that if you held opposites together, then you suspend your thought and your mind moves to a new level. The suspension of thought allows an intelligence beyond thought to act and create a new form. The swirling of opposites creates the conditions for a new point of view to bubble freely from your mind. Bohr’s ability to imagine light as both a particle and a wave led to his conception of the principle of complementarity. Thomas Edison’s invention of a practical system of lighting involved combining wiring in parallel circuits with high resistance filaments in his bulbs, two things that were not considered possible by conventional thinkers, in fact were not considered at all because of an assumed incompatibility. Because Edison could tolerate the ambivalence between two incompatible things, he could see the relationship that led to his breakthrough.

GENIUSES THINK METAPHORICALLY. Aristotle considered metaphor a sign of genius, believing that the individual who had the capacity to perceive resemblances between two separate areas of existence and link them together was a person of special gifts. If unlike things are really alike in some ways, perhaps, they are so in others. Alexander Graham Bell observed the comparison between the inner workings of the ear and the movement of a stout piece of membrane to move steel and conceived the telephone. Thomas Edison invented the phonograph in one day, after developing an analogy between a toy funnel and the motions of a paper man and sound vibrations. Underwater construction was made possible by observing how shipworms tunnel into timber by first constructing tubes. Einstein derived and explained many of his abstract principles by drawing analogies with everyday occurrences such as rowing a boat or standing on a platform while a train passed by.

GENIUSES PREPARE THEMSELVES FOR CHANCE. Whenever we attempt to do something and fail, we end up doing something else. As simplistic as this statement may seem, it is the first principle of creative accident. We may ask ourselves why we have failed to do what we intended, and this is the reasonable, expected thing to do. But the creative accident provokes a different question: What have we done? Answering that question in a novel, unexpected way is the essential creative act. It is not luck, but creative insight of the highest order. Alexander Fleming was not the first physician to notice the mold formed on an exposed culture while studying deadly bacteria. A less gifted physician would have trashed this seemingly irrelevant event but Fleming noted it as “interesting” and wondered if it had potential. This “interesting” observation led to penicillin which has saved millions of lives. Thomas Edison, while pondering how to make a carbon filament, was mindlessly toying with a piece of putty, turning and twisting it in his fingers, when he looked down at his hands, the answer hit him between the eyes: twist the carbon, like rope. B. F. Skinner emphasized a first principle of scientific methodologists: when you find something interesting, drop everything else and study it. Too many fail to answer opportunity’s knock at the door because they have to finish some preconceived plan. Creative geniuses do not wait for the gifts of chance; instead, they actively seek the accidental discovery.


Recognizing the common thinking strategies of creative geniuses and applying them will make you more creative in your work and personal life. Creative geniuses are geniuses because they know “how” to think, instead of “what” to think. Sociologist Harriet Zuckerman published an interesting study of the Nobel Prize winners who were living in the United States in 1977. She discovered that six of Enrico Fermi’s students won the prize. Ernst Lawrence and Niels Bohr each had four. J. J. Thompson and Ernest Rutherford between them trained seventeen Nobel laureates. This was no accident. It is obvious that these Nobel laureates were not only creative in their own right, but were also able to teach others how to think creatively. Zuckerman’s subjects testified that their most influential masters taught them different thinking styles and strategies rather than what to think

Michael Michalko is the author of the highly acclaimed Thinkertoys: A Handbook of Creative Thinking Techniques; Cracking Creativity: The Secrets of Creative Genius; ThinkPak: A Brainstorming Card Deck and Creative Thinkering: Putting Your Imagination to Work. These books contain the creative thinking techniques used by creative geniuses throughout history to create their original and novel  ideas.