Posts Tagged ‘brainstorming’

CREATIVE THINKING TECHNIQUE: THE EXQUISITE CORPSE

horses or woman

  It is not possible to think unpredictably by looking harder and longer in the same direction. When your attention is focused on a subject, only a few patterns dominate your thinking. These patterns produce predictable ideas no matter how hard you try. In fact, the harder you try, the stronger the same patterns become. If, however, you change your focus and combine your subject with something that is not related, different, unusual patterns are activated. 

Try an experiment. Pick eight random words (or use the following words) and give the list to someone or to a small group (for example: flower pot, baby, glass, grasshopper, coffee pot, box, toast and garage). Ask them to divide the words into two groups without giving them any rationale for the division. You’ll discover that people will come up with some very creative classifications. They’ll group them according to “words with the letter,” “things that touch water,” “objects made in factories,” and so on. No one ever says there is no connection, they invent them. 

Though we seldom think about it, making random connections in such a manner are conceptual creative acts. Making random connections were popular techniques used by Jackson Pollock and other Surrealist artists to create conceptual combinations in art. Artists in a group would take turns, each contributing any word that occurred to them in a “sentence” without seeing what the others had written. The resulting sentence would eventually become a combination of concepts that they would study and interpret hoping to get a novel insight or a glimpse of some deeper meaning. The technique is named “The Exquisite Corpse” after a sentence which happened to contain those words. 

BLUEPRINT 

Have the group bounce ideas and thoughts about the subject off each other for five to ten minutes. 

  • Then, ask the participants to think about what was discussed and silently write one word that occurs to them on a card.
  • Collect the cards have the group combine the words into a sentence (words can be added by the group to help the sentence make sense).
  • Then invite the group to study the final sentence and build an idea or ideas from it. 

An Alzheimer’s organization planned to have an auction to raise money for their cause. They planned an elaborate, sophisticated evening and looked for unusual items they could auction. They tried the “exquisite corpse” technique. Some of the words they came up with were people, cruises, creative, furniture, charity, designer, custom, art, thin air, and celebrities. One of the connections was: create—-art—-thin air. 

This triggered their idea which was the sensation of the auction. They sold an idea for an artwork that doesn’t exist. They talked a well-known conceptual artist into describing an idea for an artwork. The idea was placed in an envelope and auctioned off for $5,000. Legal ownership was indicated by a typed certificate, which specified that the artwork (10, 0000 lines, each ten inches long, covering a wall) be drawn with black and red pencils. The artist and the owner will have one meeting where the artist will describe his vision for the painting with the owner. The owner has the right to reproduce this piece as many times as he likes.

MICHAEL MICHALKO author of THINKERTOYS (HANDBOOK OF CREATIVE THINKING  TECHNIQUES.

 http://www.amazon.com/dp/1580087736/ref=cm_sw_r_tw_dp_qucvxb0A4HCF1 … via @amazon

 

 

Change the way you look at things and the things you look at change

One of the many ways in which our mind attempts to make life easier is to solve the first impression of the problem that it encounters.  Like our first impressions of people, our initial perspective on problems and situations are apt to be narrow and superficial.  We see no more than we’ve been conditioned to see — and stereotyped notions block clear vision and crowd out imagination.  This happens without any alarms sounding, so we never realize it is occurring. The illustration below appears to have no meaning.  If you continue looking at it from your initial perspective, you will see nothing.  If, however, you step back from your computer and view the illustration from a distance or from an angle, you will see a message.

bad eyes

When Leonardo daVinci finished a painting, he would always look at it from a far distance to get a different perspective.  By distancing yourself from the pattern, you changed your perception of it, thereby allowing yourself to see something that you could not otherwise see. 

Our perceptual positions determine how we view things.  In the illustration below, if you sit still and focus on the dot in the center, you see two broken line circles.  However, if you change your perspective by moving your head backwards and forward, something strange will happen.

moving circles

 

Michael Michalko  http://www.amazon.com/Creative-Thinkering-Putting-Your-Imagination/dp/160868024X/ref=sr_1_1?ie=UTF8&qid=1316698657&sr=8-1

 

 

How is a burdock similar to a zipper?

Gorge de Mestral, a Swiss inventor, wanted to improve the ordinary zipper. He looked for a better and easier way to fasten things. George’s thinking was inclusive as he was always trying to connect all sorts of things with the “essence of fastening” (e.g., how do windows fasten, how does a bird fasten its nest to a branch, how do wasps fasten their hives, how do mountain climbers fasten themselves to the mountain and so on). One day he took his dog for a nature hike. They both returned covered with burrs, the plant like seed-sacs that cling to animal fur in order to travel to fertile new planting grounds.

He made the analogical-metaphorical connection between burrs and zippers when he examined the small hooks that enabled the seed-bearing burr to cling so viciously to the tiny loops in the fabric of his pants. The key feature of George de Mestral’ thinking was his conceptual connection between patterns of a burr and patterns of a zipper. He bounced what I mean is that he had to take chances as to what aspects of a “burr” pattern matter, and what doesn’t. Perhaps shapes count, but not textures–or vice versa. Perhaps orientation count, but not sizes–or vice versa. Perhaps curvature or its lack counts and so on until he got it.

Patterns are fitted together like words in a phrase or sentence. A sentence is not the sum of its words but depends on their syntactic arrangement; “A dog bites a man” is not the same as “Dog a man a bites.” Likewise, an original idea is not the sum of combined thoughts but depends on how they are integrated together.

De Mestral’s thinking inspired him to invent a two-sided fastener (two-sided like a zipper), one side with stiff hooks like the burrs and the other side with soft loops like the fabric of his pants. He called his invention “Velcro,” which is itself a combination of the word velour and crochet. Velcro is not a burr + a zipper. It is a blend of the two into an original idea.

Perception and pattern recognition are major components of creative thinking.  Russian scientist Mikhail Bongard created a remarkable set of visual pattern recognition problems where two classes of figures are presented and you are asked to identify the conceptual difference between them.  Try the following patterns and see how you do.

Below is a classic example of a Bongard problem.  You have two classes of figures (A and B).  You are asked to discover some abstract connection that links all the various diagrams in A and that distinguishes them from all the other diagrams in group B.

Thought Experiment

.EX.BONGARD (2) (1024x1024)

One has to think the way de Mestral thought the way he thought when he created Velcro. One must take chances that certain aspects of a given diagram matter, and others are irrelevant.  Perhaps shapes count, but not sizes — or vice versa.  Perhaps orientations count, but not sizes — or vice versa.  Perhaps curvature or its lack counts, but not location inside the box — or vice versa.  Perhaps numbers of objects but not their types matter — or vice versa.  Which types of features will wind up mattering and which are mere distracters.  As you try to solve the problem you will find the essence of your mental activity is a complex interweaving of acts of abstraction and comparison, all of which involve guesswork rather than certainty.  By guesswork I mean that one has to take a chance that certain aspects matter and others do not.

Logic dictates that the essence of perception is the activity of dividing a complex scene into its separate constituent objects and attaching separate labels to the now separated parts members of pre-established categories, such as ovals, Xs and circles as unrelated exclusive events.  Then we’re taught to think exclusively within a closed system of hard logic.

In the above patterns, if you were able to discern the distinction between the diagrams, your perception is what found the distinction, not logic.  The distinction is the ovals are all pointing to the X in the A group, and the ovals area all pointing at the circles in the B group.

The following thought experiment is an even more difficult problem, because you are no longer dealing with recognizable shapes such as ovals, Xs, circles or other easily recognizable structures for which we have clear structures.  To solve this you need to perceive subjectively and intuitively make abstract connections, much like Einstein thought when he thought about the similarities and differences between the patterns of space and time, and you need to consider the overall context of the problem.

Again, you have two classes of figures (A and B) in the Bongard problem.  You are asked to discover some abstract connection that links all the various diagrams in A and that distinguishes them from all the other diagrams in group B.

BONGARD.DOT.NECK

Scroll down for the answer.

.

.

 

.

 

.

 

.

 

.

.

ANSWER: The dots in “A” are on the same side of the neck in the illustration. The dots in “B” are on the opposite sides of the neck. To learn more about how creative geniuses get their ideas, read Michael Michalko’s Creative Thinkering: Putting Your Imagination to Work. http://www.amazon.com/Creative-Thinkering-Putting-Your-Imagination/dp/160868024X/ref=sr_1_1?ie=UTF8&qid=1316698657&sr=8-1

 

 

Seven Sins that Kill Creativity in America

seven

SIN ONE. WE DO NOT BELIEVE WE ARE CREATIVE

People do not believe they are creative. We have been taught that we are the product of our genes, our parents, our family history, our personal history, our I.Q., and our education. Consequently, we have been conditioned to have a fixed mindset about creativity and believe only a select few are born creative and the rest not. Because we believe we are not creative, we spend our lives observing only those things in our experiences that confirm this belief. We spend our lives knowing and living within the limitations we believe we have. We listen to our “inner” voice that keeps telling us not to pretend to be something we’re not. Believing we are not creative makes us comfortable to be cognitively lazy.

SIN TWO. WE BELIEVE THE MYTHS ABOUT CREATIVITY

We believe many of the myths about creativity that have been promulgated over the years. We’re told creativity is rare, mysterious, and magical and comes from a universal unconsciousness, a sudden spark of “Aha!” or the divine. We believe only special people are genetically endowed to be creative and that normal educated people cannot be creative and should not embarrass themselves by trying. Additionally, we also believe creative types are depressed, crazy, freaky, unbalanced, disruptive, different, argumentative, abnormal, flaky, and trouble makers.  We should be thankful we are normal and think the way we were taught to think. 

SIN THREE. WE FEAR FAILURE

The most important thing for many people is to never make a mistake or fail. The fixed mind-set regards failure as a personal insult, and when they fail they withdraw, lie and try to avoid future challenges or risks.

At one time in America people believed that all a person was entitled to was a natural birth. Everything else was up to the person, and a person’s pride and passion came from overcoming the adversities in life. Failure was seen as an opportunity rather than insult. Once Thomas Edison’s assistant asked him why he didn’t give up on the light bulb. After all, he failed 5,000 times. Edison’s responded by saying he didn’t know what his assistant meant by the word “failed,” because Edison believed he discovered 5000 things that don’t work. This was the era when creative thinking flourished in America. People like Edison, Tesla, and Westinghouse did not know they could not think unconventionally and so they did.

After World War II, psychologists promulgated “Inevitability theories” about how everyone’s life was shaped by genetic or environmental factors that were beyond their control. There began a promiscuity of the teaching of helplessness that has dimmed the human spirit and has created a “culture of helplessness.” It is this culture of helplessness that has cultivated the mindset that fears failure.

This fixed mindset of fear is grounded in the belief that talent is genetic—you’re born an artist, writer, or entrepreneur. Consequently, many of us never try anything we haven’t tried before. We attempt only those things where we have the past experience and knowledge and know we can succeed. This culture of helplessness cultivated by educators encourages us to look for reasons why we cannot succeed.  

SIN FOUR. WE FAIL TO ACT

Because we fear failure we not act. We avoid taking action. If we don’t act, we can’t fail. If we are forced to take action, we do not do anything until we have a perfect plan which will take into account any and everything that can happen. We make sure the plan details all the human and material resources you need. We will seek the guidance and direction of every expert and authority we are able to approach. If any authority figure or expert expresses even the slightest doubt, we will not take the risk of failure and abandon the plan.

All art is a reaction the first line drawn. If no line is drawn there will be no art. Similarly, if you don’t take action when you need new ideas in your personal and business lives and do nothing, nothing bad can happen and nothing is the result. In our culture of helplessness, nothing is better than even the slightest chance of failure, because failure means we are worthless.

SIN FIVE. WE FAIL TO PRODUCE IDEAS

We are taught to be critical, judgmental, negative and reproductive thinkers. In our “culture of helplessness,” we take pride in dissecting ideas and thoughts of others and demonstrating their flaws. The more negative we can be, the more intelligent we appear to others. In meetings, the person who is master of destroying ideas becomes the most dominant one. The first thought we have when confronted with a new idea is “Okay, now what’s wrong with it?”

When forced to come up with ideas, we come up with only a few. These are the ideas we always come up with because these are the same old safe ideas that are closest to our consciousness. Our judgmental mind will censor anything that is new, ambiguous or novel. We respond to new ideas the way our immune system responds to a deadly virus. Our inner voice will advise us to “Not look stupid,” “Give up. You don’t have the background or expertise,” “It’s not relevant,” “If it was any good, it would already have been done before” “This will never be approved,” “where’s the proof? “This is not logical,” “Don’t be silly,” “You’ll look stupid,” and so on. Anything that is not verifiable by our past experiences and beliefs is not possible.

Instead of looking for ways to make things work and get things done, we spend our time looking for reasons why things can’t work or get done.

SIN SIX. WE FAIL TO LOOK AT THINGS IN DIFFERENT WAYS

square and circles

Most people see the pattern in the illustration above as a square composed of smaller squares or circles or as alternate rows of squares and circles

It cannot be easily seen as columns of alternate squares and circles. Once it’s pointed out that it can also be viewed as columns of alternate squares and circles, we, of course, see it. This is because we have become habituated to passively organize similar items together in our minds. Geniuses, on the other hand, subvert habituation by actively looking for alternative ways to look at things and alternative ways to think about them.

One of the many ways in which people attempt to make thinking easier is to solve the first impression of the problem that they encounter. This enables them to approach the problem with predetermined concepts and they end up seeing what they expect to see based on their past experiences. Once you accept the initial perspective, you close off all other lines of thought. Certain kinds of ideas will occur to you, but only those kind and no others. Settling with the first perspective keeps things simple and helps you avoid ambiguity.

With creative thinking, one generates as many alternative approaches as one can. You consider the least obvious as well as the most likely approaches. It is the willingness to explore all approaches that is important, even after one has found a promising one. Einstein was once asked what the difference was between him and the average person. He said that if you asked the average person to find a needle in the haystack, the person would stop when he or she found a needle. He, on the other hand, would tear through the entire haystack looking for all the possible needles.

We are taught to follow a certain thinking process and must never entertain alternative ways of looking at the problem or different ways of thinking about it. Keep doing what you are doing. The more times you think the same way, the better you become at producing orderly and predictable ideas. Always think the way you’ve always thought to always get what you’ve always got.

SIN SEVEN. FAILURE TO ACCEPT PERSONAL RESPONSIBILITY

It is not our fault we are not creative. It’s the teachers who are responsible and our parents, the churches, our genetics, the government, lack of time, lack of resources, lack of an inspiring environment, lack of suitable technology, lack of encouragement, too much sugar, lack of financial rewards, the organization, the bosses, lack of entitlements, lack of any guarantee of success, and, after all, most of us are born left-brained not right-brained. You can’t expect people to be something they’re not. In our “culture of helplessness,” we have learned that we cannot change our attitude, behavior, beliefs or the way we think.

SUMMARY. The only difference between people who are creative and people who are not is a simple belief. Creative people believe they are creative. People who believe they are not creative, are not. Once you have a particular identity and set of beliefs about yourself, you become interested in seeking out the skills needed to express your identity and beliefs.

This is why people who believe they are creative become creative. They work hard at learning how to think creatively and produce great quantities of ideas. If you believe you are not creative, then there is no need to learn how to become creative and you don’t. The reality is that believing you are not creative excuses you from trying or attempting anything new. When someone tells you that they are not creative, you are talking to someone who has no interest and will make no effort to be a creative thinker.

…………………………..

Michael Michalko is the author of the highly acclaimed Thinkertoys: A Handbook of Creative Thinking Techniques; Cracking Creativity: The Secrets of Creative Genius; ThinkPak: A Brainstorming Card Deck and Creative Thinkering: Putting Your Imagination to Work.

http://creativethinking.net/WP01_Home.htm

What Would You Have Done?

report carda

The above is a copy of a school report for Nobel prize winner, Dr John Gurdon, from his days studying Biology at Eton College. His professor a Mister Gaddum noted that for Gurdon to study science would be a sheer waste of time, both on his part, and on the part of those teachers who have to teach him.

My question is: If you were John’s parent, would you have discouraged his interest in science and directed his attention to another field of study?

Dr. Gurdon said that this was the only item about him that he ever framed. It hangs on a wall behind his desk as a reminder to trust your own instincts. It was at Oxford as a postgraduate student that he published his groundbreaking research on genetics and proved for the first time that every cell in the body contains the same genes. He did so by taking a cell from an adult frog’s intestine, removing its genes and implanting them into an egg cell, which grew into a clone of the adult frog.  The idea was controversial at the time because it contradicted previous studies by much more senior scientists, and it was a decade before the then-graduate student’s work became widely accepted.

But it later led directly to the subsequent discovery by Prof Yamanaka that adult cells can be “reprogrammed” into stem cells for use in medicine. This means that cells from someone’s skin can be made into stem cells which, in turn, can turn into any type of tissue in the body, meaning they can replace diseased or damaged tissue in patients.

Not allowing yourself to get discouraged by others is the most important lesson Dr. Gurdon learned in his life. Trust your own instincts. Albert Einstein was expelled from school because his attitude had a negative effect on serious students; he failed his university entrance exam and had to attend a trade school for one year before finally being admitted; and was the only one in his graduating class who did not get a teaching position because no professor would recommend him. One professor said Einstein was “the laziest dog” the university ever had. Beethoven’s parents were told he was too stupid to be a music composer. Charles Darwin’s colleagues called him a fool and what he was doing “fool’s experiments” when he worked on his theory of biological evolution.  Walt Disney was fired from his first job on a newspaper because “he lacked imagination.” Thomas Edison had only two years of formal schooling, was totally deaf in one ear and was hard of hearing in the other, was fired from his first job as a newsboy and later fired from his job as a telegrapher; and still he became the most famous inventor in the history of the U.S.

…………………….

(Michael Michalko is the author of Thinkertoys: A Handbook of Creative Thinking Techniques; Cracking Creativity: The Thinking Strategies of Creative Geniuses; Thinkpak: A Brainstorming Card Deck, and Creative Thinkering: Putting Your Imagination to Work. http://www.creativethinking.net)

ARE YOU COGNITIVELY LAZY?

THINKING

We have not been taught how to think for ourselves, we have been taught what to think based on what past thinkers thought. We are taught to think reproductively, not productively. What most people call thinking is simply reproducing what others have done in the past. We have been trained to seek out the neural path of least resistance, searching out responses that have worked in the past, rather than approach a problem on its own terms.

Educators discourage us from looking for alternatives to prevailing wisdom. When confronted with a problem, we are taught to analytically select the most promising approach based on past history, excluding all other approaches and then to work logically within a carefully defined direction towards a solution. Instead of being taught to look for possibilities, we are taught to look for ways to exclude them. This kind of thinking is dehumanizing and naturalizes intellectual laziness which promotes an impulse toward doing whatever is easiest or doing nothing at all. It’s as if we entered school as a question mark and graduated as a period.

Once when I was a young student, I was asked by my teacher, “What is one-half of thirteen?” I answered six and one half or 6.5. However, I exclaimed there are many different ways to express thirteen and many different to halve something. For example, you can spell thirteen, then halve it (e.g., thir/teen). Now half of thirteen becomes four (four letters in each half). Or, you can express it numerically as 13, and now halving 1/3 gives you 1 and 3. Another way to express a 13 is to express it in Roman numerals as XIII and now halving XI/II gives you XI and II, or eleven and two. Consequently one-half of thirteen is now eleven and two. Or you can even take XIII, divide it horizontally in two (XIII) and half of thirteen becomes VIII or 8.

My teacher scolded me for being silly and wasting the class’s time by playing games. She said there is only one right answer to the question about thirteen. It is six and one-half or 6.5. All others are wrong. I’ll never forget what she said “When I ask you a question, answer it the way you were taught or say you don’t know. If you want to get a passing grade, stop making stuff up.”

When we learn something, we are taught to program it into our brain and stop thinking about or looking for alternatives. Over time these programs become stronger and stronger, not only cognitively but physiologically as well. To get a sense of how strong these programs are, try solving the following problem.

Even when we actively seek information to test our ideas to see if we are right, we usually ignore paths that might lead us to discover alternatives. Following is an interesting experiment, which was originally conducted by the British psychologist Peter Wason that demonstrates this attitude. Wason would present subjects with the following triad of three numbers in sequence.

2       4       6

He would then ask subjects to write other examples of triads that follow the number rule and explain the number rule for the sequence. The subjects could ask as many questions as they wished without penalty.

He found that almost invariably most people will initially say, “4, 6, 8,” or “20, 22, 24,” or some similar sequence. And Watson would say, yes, that is an example of a number rule. Then they will say, “32, 34, 36″ or “50, 52, 54″ and so on– all numbers increasing by two. After a few tries, and getting affirmative answers each time, they are confident that the rule is numbers increasing by two without exploring alternative possibilities.

Actually, the rule Wason was looking for is much simpler– it’s simply numbers increasing. They could be 1, 2, 3 or 10, 20, 40 or 400, 678, 10,944. And testing such an alternative would be easy. All the subjects had to say was 1, 2, 3 to Watson to test it and it would be affirmed. Or, for example, a subject could throw out any series of numbers, for example, 5, 4, and 3 to see if they got a positive or negative answer. And that information would tell them a lot about whether their guess about the rule is true.

The profound discovery Wason made was that most people process the same information over and over until proven wrong, without searching for alternatives, even when there is no penalty for asking questions that give them a negative answer. In his hundreds of experiments, he, incredibly, never had an instance in which someone spontaneously offered an alternative hypothesis to find out if it were true. In short, his subjects didn’t even try to find out if there is a simpler or even, another, rule.

On the other hand, creative thinkers have a vivid awareness of the world around them and when they think, they seek to include rather than exclude alternatives and possibilities. They have a “lantern awareness” that brings the whole environment to the forefront of their attention. So, by the way, do children before they are educated. This kind of awareness is how you feel when you visit a foreign country; you focus less on particulars and experience everything more globally because so much is unfamiliar.

I am reminded of a story about a student who protested when his answer was marked wrong on a physics degree exam at the University of Copenhagen. The imaginative student was purportedly Niels Bohr who years later was co-winner of the Nobel Prize for physics.

In answer to the question, “How could you measure the height of a skyscraper using a barometer?” he was expected to explain that the barometric pressures at the top and the bottom of the building are different, and by calculating, he could determine the building’s height. Instead, he answered, “You tie a long piece of string to the neck of the barometer, then lower the barometer from the roof of the skyscraper to the ground. The length of the string plus the length of the barometer will equal the height of the building.

This highly original answer so incensed the examiner that the student was failed immediately. The student appealed on the grounds that his answer was indisputably correct, and the university appointed an independent arbiter to decide the case.

The arbiter judged that the answer was indeed correct, but did not display any noticeable knowledge of physics. To resolve the problem it was decided to call the student in and allow him six minutes in which to provide a verbal answer that showed at least a minimal familiarity with the basic principles of physics.

For five minutes the student sat in silence, forehead creased in thought. The arbiter reminded him that time was running out, to which the student replied that he had several extremely relevant answers, but couldn’t make up his mind which to use. On being advised to hurry up the student replied as follows:

“Firstly, you could take the barometer up to the roof of the skyscraper, drop it over the edge, and measure the time it takes to reach the ground. The height of the building can then be worked out from the formula H = 0.5g x t squared. But bad luck on the barometer.”

“Or if the sun is shining you could measure the height of the barometer, then set it on end and measure the length of its shadow. Then you measure the length of the skyscraper’s shadow, and thereafter it is a simple matter of proportional arithmetic to work out the height of the skyscraper.”

“But if you wanted to be highly scientific about it, you could tie a short piece of string to the barometer and swing it like a pendulum, first at ground level and then on the roof of the skyscraper. The height is worked out by the difference in the gravitational restoring force T =2 pi sqr root (I /9).”

“Or if the skyscraper has an outside emergency staircase, it would be easier to walk up it and mark off the height of the skyscraper in barometer lengths, then add them up.”

“If you merely wanted to be boring and orthodox about it, of course, you could use the barometer to measure the air pressure on the roof of the skyscraper and on the ground, and convert the difference in millibars into feet to give the height of the building.”

“But since we are constantly being exhorted to exercise independence of mind and apply scientific methods, undoubtedly the best way would be to knock on the janitor’s door and say to him ‘If you would like a nice new barometer, I will give you this one if you tell me the height of this skyscraper’.”

The obvious moral here is that education should not consist merely of stuffing students’ heads full of information and formulae to be memorized by rote and regurgitated upon demand, but of teaching students how to think and solve problems using whatever tools are available. In the mangled words of a familiar phrase, students should be educated in a way that enables them to figure out their own ways of catching fish, not simply taught a specific method of fishing.

…………………….

Read http://www.amazon.com/Cracking-Creativity-Secrets-Creative-Genius/dp/1580083110/ref=pd_sim_b_2?ie=UTF8&refRID=16NCRBEMHRCEQ1RAZG5V

Visit Michael Michalko’s creative thinking website: www.creativethinking.net

Creative Thinking Technique: Combine Ideas from Different Domains

combine.domains

Many breakthroughs are based on combining information from different domains that are usually not thought of as related. Integration, synthesis both across and within domains, is the norm rather than the exception. Ravi Shankar found ways to integrate and harmonize the music of India and Europe; Paul Klee combined the influences of cubism, children’s drawings, and primitive art to fashion his own unique artistic style; Salvador Dali integrated Einstein’s theory of relativity into his masterpiece Nature Morte Vivante, which artistically depicts several different objects simultaneously in motion and rest. And almost all scientists cross and recross the boundaries of physics, chemistry, and biology in the work that turns out to be their most creative.

ASK PEOPLE IN DIFFERENT DOMAINS FOR IDEAS. Another way to combine talent is to elicit advice and information about your subject from people who work in different domains. Interestingly, Leonardo da Vinci met and worked with Niccolô Machiavelli, the Italian political theorist, in Florence in 1503. The two men worked on several projects together, including a novel weapon of war: the diversion of a river. Professor Roger Masters of Dartmouth College speculates that Leonardo introduced Machiavelli to the concept of applied science. Years later, Machiavelli combined what he learned from Leonardo with his own insights about politics into a new political and social order that some believe ultimately sparked the development of modern industrial society.

Jonas Salk, developer of the vaccine that eradicated polio, made it a standard practice to interact with men and women from very different domains. He felt this practice helped to bring out ideas that could not arise in his own mind or in the minds of people in his own restricted domain. Look for ways to elicit ideas from people in other fields. Ask three to five people who work in other departments or professions for their ideas about your problem. Ask your dentist, your accountant, your mechanic, etc. Describe the problem and ask how they would solve it.

Listen intently and write down the ideas before you forget them. Then, at a later time, try integrating all or parts of their ideas into your idea. This is what Robert Bunsen, the chemist who invented the familiar Bunsen burner, did with his problem. He used the color of a chemical sample in a gas flame for a rough determination of the elements it contained. He was puzzled by the many shortcomings of the technique that he and his colleagues were unable to overcome, despite their vast knowledge of chemistry. Finally, he casually described the problem to a friend, Kirchhoff, a physicist, who immediately suggested using a prism to display the entire spectrum and thus get detailed information. This suggestion was the breakthrough that led to the science of spectrography and later to the modern science of cosmology.

EXAMPLES. Physicists in a university assembled a huge magnet for a research project. The magnet was highly polished because of the required accuracy of the experiment. Accidentally, the magnet attracted some iron powder that the physicists were unable to remove without damaging the magnet in some way. They asked other teachers in an interdepartmental meeting for their ideas and suggestions. An art instructor came up with the solution immediately, which was to use modeling clay to remove the powder.

The CEO of a software company looked for ways to motivate employees to participate more actively in the creative side of the business. They wanted employee ideas for new processes, new products, improvements, new technologies and so on. He tried many things but nothing seemed to excite and energize employees to become more creative.

One evening at a dinner with some of his friends he mentioned his problem and asked them for ideas. After a brief discussion, a friend who was a stockbroker suggested thinking ways to parallel ideas with stocks. Look for ways for people to buy and sell ideas the same way his customers study, buy and sell stocks on the stock exchange.

The CEO was intrigued with the novelty of the idea and he and his stockbroker friend looked for patterns between the stock exchange and an internal employee program. They blended the architecture of the stock exchange with the internal architecture of their company’s internal market to create the company’s own stock exchange for ideas. Their exchange is called Mutual Fun. Any employee can propose that the company acquire a new technology, enter a new business, make a new product or make an efficiency improvement. These proposals become stocks, complete with ticker symbols, discussion lists and e-mail alerts.

 Fifty-five stocks are listed on the company’s internal stock exchange. Each stock comes with a detailed description — called an expectus, as opposed to a prospectus — and begins trading at a price of $10. Every employee gets $10,000 in “opinion money” to allocate among the offerings, and employees signal their enthusiasm by investing in a stock and, better yet, volunteering to work on the project. Employees buy or sell the stocks, and prices change to reflect the sentiments of the company’s executives, engineers, computer scientists, project managers, marketing, sales, accountants and even the receptionist.

The result has been a resounding success. Among the company’s ‘ core technologies are pattern-recognition algorithms used in military applications, as well as for electronic gambling systems at casinos. A member of the administrative staff, with no technical expertise, thought that this technology might also be used in educational settings, to create an entertaining way for students to learn history or math. She started a stock called Play and Learn (symbol: PL), which attracted a rush of investment from engineers eager to turn her idea into a product. Lots of employees got passionate about the idea and it led to a new line of business.

INVITE OTHER DEPARTMENTS TO JOIN YOUR BRAINSTORMING SESSION. If you’re brainstorming a business problem in a group, try asking another department to join yours. For example, if you are in advertising and want to create a new product advertising campaign, ask people from manufacturing to join your session. Separate the advertising and manufacturing people into two groups. Each group brainstorms for ideas separately. Then combine the groups and integrate the ideas.

…………………………..

cc.3For more ideas on how to combine dissimilar subjects to create new ideas read Cracking Creativity: The Secrets of Creative Genius by Michael Michalko http://www.amazon.com/Cracking-Creativity-Secrets-Creative-Genius/dp/1580083110/ref=pd_sim_b_2?ie=UTF8&refRID=16NCRBEMHRCEQ1RAZG5V