Posts Tagged ‘creative’

ATTENTION!

creATIVES

George de Mestral was inspired to improve the zipper. He thought about the essence of zippers which is to fasten two separate pieces of fabric together. His question became “How do things fasten?” He became committed to the idea of inventing a better fastener and spent considerable time pondering how things fasten in other domains including nature.

One day when George was hunting birds with his Irish pointer, he traveled through some burdock thistles. The prickly seed burrs from the plants clung to his clothing and to his dog. While pulling off the burrs he noticed how they were removable yet easily reattached.

When you are committed and start to actively work on a problem that you are passionate about, you will start to notice more and more things that relate to what you are working on. With an infinite amount of stimuli constantly hitting our brains, we need the ability to filter that which is most relevant to us. And our mind is that filter. Often these connections can seem like coincidences, but cognitive scientists tell us it is simply that part of our brain that screens out information we are not interested in and focuses on the things that we can use. These connections give you different ways to look at information and different ways to focus on it.

The burdock fascinated George and he imagined a fastener that mimicked a burdock. He studied the burrs under a microscope and discovered a hook system used by the burdock plant to migrate its seeds by attachment. The hooks could grab onto loops of thread or fur and migrate with the object it fastened itself to. This gave him the idea of creating a hook and loop fastener.

George envisioned two fabrics that could attach in this manner with one having a surface covered with minuscule hooks and another with hoops. Most of the experts he visited did not believe hooks could be created on the surface of fabric. However, he found a weaver at a textile plant that was willing to work with him. George discovered that a multifilament yarn weaved from velvet or cotton terry cloth created a surface of hooped threads. To create hooks, George would partially cut the hoops so they would become hooks. There was a great deal of experimentation to get the right density, thread sizes and rigidity. He eventually weaved the hook-side yarn from nylon and invented Velcro.

It was not logic that guided his thinking process but perception and pattern recognition between two totally unrelated subjects: zippers and burdocks. Logic dictates that burdocks are animate plants and zippers are inanimate manmade objects that are totally unrelated and, therefore, any relationship between the two is to be excluded. It was George’s creative perception that recognized the common factor between a burdock that fastens and a zipper that fastens, not logic.

Cognitive scientists understand the importance of perception and pattern recognition as a major component of creative  thinking. Russian computer scientist, Mikhail Bongard, created a   remarkable set of visual pattern recognition problems. The Bongard problems present two sets of relatively simple diagrams, say A and B. All the diagrams from set A have a common factor or attribute, which is lacking in all the diagrams of set B. The problem is to find, or to formulate, convincingly, the common  factor.

Below is an example of a Bongard problem. Test  your perception and pattern recognition skills and try to solve the problem.   You have two classes of figures (A and B).  You are asked to discover some abstract connection that links all the various diagrams in A and that   distinguishes them from all the other diagrams in group B.

OVALS

One has to take chances that certain aspects of a given diagram matter, and others are irrelevant.  Perhaps shapes count, but not sizes — or vice versa.  Perhaps orientations count, but not sizes — or vice versa.  Perhaps curvature or its lack counts, but not location inside the box — or vice versa.  Perhaps numbers of objects but not their types matter — or vice versa.  Which types of features will wind up mattering and which are mere distracters.  As you try to solve the problem, you will find the essence of your mental activity is a complex interweaving of acts of abstraction and comparison, all of which involve guesswork rather than certainty.  By guesswork I mean that one has to take a chance that certain aspects matter and others do not.

Logic dictates that the essence of perception is the activity of dividing a complex scene into its separate constituent objects and attaching separate labels to the now separated parts of pre-established categories, such as ovals, Xs and circles as unrelated exclusive events.  Then we’re taught to think exclusively within a closed system of hard logic.

In the above patterns, if you were able to discern the distinction between the diagrams, your perception is what found the distinction, not logic.  The distinction is the ovals are all pointing to the X in the A group, and the ovals area all pointing at the circles in the B group.

The following thought experiment is an even more difficult problem, because you are no longer dealing with recognizable shapes such as ovals, Xs, circles or other easily recognizable structures for which we have clear representations.  To solve this, you need to perceive subjectively and intuitively, make abstract connections, much like Einstein thought when he thought about the similarities and   differences between the patterns of space and time, and you need to consider the overall context of the problem.

BONGARD.DOT.NECK

                                                   A                                                          B

Again, you have two classes of figures (A and B) in the Bongard problem.  You are asked to discover some abstract connection that links all the various diagrams in A and that distinguishes them from all the other diagrams in group B.

SCROLL DOWN FOR ANSWER

 

 

 

 

 

 

 

 

 

 

 

 

 

ANSWER: The rule is the “dots” in A are on the same side of the neck.

How did you do?

 

Learn how to get the ideas you need to change your life.

http://creativethinking.net/#sthash.SXV5T2cu.dpbs

.

 

HOW EINSTEIN EXPLAINED HIS CREATIVE GENIUS

einstein.intuition

Think of how Albert Einstein changed our understanding of time and space by fantasizing about people going to the center of time in order to freeze their lovers or their children in century-long embraces. This space he imagined is clearly reminiscent of a black hole, where, theoretically, gravity would stop time. Einstein also fantasized about a woman’s heart leaping and falling in love two weeks before she has met the man she loves, which lead him to the understanding of acausality, a feature of quantum mechanics. A caricature of special relativity (the relativistic idea that people in motion appear to age more slowly) is based on his fantasy of a world in which all the houses and offices are on wheels, constantly zooming around the streets (with advance collision-avoidance systems).

Einstein summarized the value of using your imagination to fantasize best when he said “When I examine myself and my methods of thought, I come to the conclusion that the gift of fantasy has meant more to me than my talent for absorbing positive knowledge.”

THOUGHT EXPERIMENT: Try to solve the following thought experiment before you read the paragraph that follows it. The thought experiment is attributed to the German Gestalt psychologist Karl Dunker.

One morning, exactly at sunrise, a Buddhist monk began to climb a tall mountain. The narrow path, no more than a foot or two wide, spiraled around the mountain to a glittering temple at the summit. The monk ascended the path at a varying rate of speed, stopping many times along the way to rest and to eat the dried fruit he carried with him. He reached the temple shortly before sunset. After several days of fasting and meditation, he began his journey back along the same path, starting at sunrise and again walking at a varying speed with many stops along the way. His average speed descending was, of course, greater than his average climbing speed. Is there a spot along the path that the monk will occupy on both trips at precisely the same time of day?

If you try to logically reason this out or use a mathematical approach, you will conclude that it is unlikely for the monk to find himself on the same spot at the same time of day on two different occasions. Instead, visualize the monk walking up the hill, and at the same time imagine the same monk walking down the hill. The two figures must meet at some point in time regardless of their walking speed or how often they stop. Whether the monk descends in two days or three days makes no difference; it all comes out to the same thing.

Now it is, of course, impossible for the monk to duplicate himself and walk up the mountain and down the mountain at the same time. But in the visual image he does; and it is precisely this indifference to logic, this superimposition of one image over the other, that leads to the solution. The imaginative conception of the monk meeting himself blends the journeys up and down the mountain and superimposes one monk on the other at the meeting place.

Your brain is a dynamic system that evolves its patterns of activity rather than computes them like a computer. It thrives on the creative energy of feedback from experiences real or fictional. You can synthesize experience; literally create it in your own imagination. The human brain cannot tell the difference between an “actual” experience and a fantasy imagined vividly and in detail. This discovery is what enabled Albert Einstein to create his thought experiments with imaginary scenarios that led to his revolutionary ideas about space and time.

Imagination gives us the impertinence to imagine making the impossible possible. Einstein, for example, was able to imagine alternatives to the sacred Newtonian notion of absolute time, and discovered that time is relative to your state of motion. Think of the thousands of scientists who must have come close to Einstein’s insight but lacked the imagination to see it because of the accepted dogma that time is absolute, and who must have considered it impossible to contemplate any theory.  

Einstein described his favorite creative thinking technique as “combinatory play” in a 1945 letter to his friend Jacque Hadamard as the essential feature in the way he thought. Our brains are conditioned to associate similar subjects but have great difficulty are forcing connections between two dissimilar and unrelated subjects or images that seem to have no associations. Our educated and practiced ability to associate similar concepts limits our ability to be creative (apples and oranges are fruit). We form ‘associative walls’ that makes us very efficient at finding common associations  but it discourages us from looking for connections between dissimilar subjects.

Overcoming these associative habits is probably one of the most important skills when it comes to creative and innovative thought. It is no coincidence that the most creative and innovative people through history are experts at forcing new connections between dissimilar subjects through combinatory play. I’ve traced the technique back to Leonardo da Vinci who wrote in his notebooks “It is not possible to think simultaneously of two subjects, no matter how dissimilar, without connections being formed.

EXAMPLE: CAN YOU GROW A BOOK? 

Following is an example of how I used the technique with a publisher who was looking for more innovative ways to publish books. The question I asked him to think about was “What is impossible to do in your industry, but if it were possible would change the nature of your business forever?”

The publisher kept a dream diary. He told me that when he had an interesting problem, he would write “key” words in a notebook by his bed before he went to sleep. When he awoke, the first thing he would do was to try to recall his dreams and record everything he could remember. Then he told me about a dream he had in the past that fascinated him.

He dreamed he was planting seeds in a large field. He nurtured the plants as they grew.  Each plant grew into a large cabbagelike head. When the plant ripened, the leaves unfolded revealing a book. Each plant produced a book. Excitedly, he raced from row to row opening each book. They were all different. Some were fiction, others were nonfiction, children’s books, coffee table books, dictionaries, biographies. He flipped through the books laughing and laughing. That was the answer to my question he said. It is impossible to grow books.

He and I discussed the meaning of the dream about growing books. We realized the impossibility of growing books but listed all the connections we could think of between growing plants and publishing books. One connection was that trees are planted and harvested for the manufacture of paper and paper is used to publish books.

Why not publish books that become trees? This would be a way to educate and inspire young readers about the need for ecologically responsible behavior. The idea the publisher decided to pursue is to publish storybooks for children about trees. The book can then be planted (planting instructions are included) and will grow back into a tree. The books will be handstitched, made from recycled acid-free paper and biodegradable inks and the cover is embedded with poplar tree seeds. Each copy comes with planting instructions. Readers are encouraged to plant and name their tree and to care for it as it grows. The marketing department plans to have the book displayed in bookshops, where it can be seen germinating by customers.

HAVE YOU EVER SEEN A CAR CRY?

In another example, Toyota engineers believed that the manufacture of an automobile that is a live, breathing creature is impossible. The attributes of living creatures are, for example, breathing, growing older, reproducing, feeling emotions, and so on. They brainstormed for possible connections between attributes of living creatures and autos.

The Japanese engineers for Toyota decided to develop a car that they say can express moods ranging from angry to happy to sad. The car can raise or lower its body height and ‘‘wag’’ its antenna, and it comes equipped with illuminated hood designs, capable of changing colors, that are meant to look like eyebrows, eyes, and even tears. The car will try to approximate the feelings of its driver by drawing on data stored in an onboard computer. So, for example, if another car swerves into an expressive car’s lane, the right combination of deceleration, brake pressure, and defensive steering, when matched with previous input from the driver, will trigger an ‘‘angry’’ look.

The angry look is created as the front end lights up with glowering red U-shaped lights, the headlights become hooded at a forty-five-degree angle, and downward-sloping “eyebrow” lights glow crimson. A good-feeling look is lighting up orange, and one headlight winks at the courteous driver and wags its antennae. A sad-feeling look is blue with “tears” dripping from the headlights.

Stretching  your  imagination by trying to make impossible things possible with combinatory play between unrelated subjects makes it possible to create ideas you cannot get using your usual way of thinking.

………………………………………………………………………………………………………Michael Michalko is a renowned creativity expert whose books describe creative thinking techniques used by creative geniuses throughout history to get their breakthrough ideas. Thinkertoys: A Handbook of Creative Thinking Techniques; Cracking Creativity: The Secrets of Creative Genius; ThinkPak: A Brainstorming Card Deck and Creative Thinkering: Putting Your Imagination to Work. http://creativethinking.net/#sthash.SXV5T2cu.dpbs

 

IF YOU ALWAYS THINK THE WAY YOU’VE ALWAYS THOUGHT, YOU’LL ALWAYS GET THE SAME OLD IDEAS YOU ALWAYS GOT. LEARN HOW TO BE A CREATIVE THINKER AND GET THE IDEAS YOU NEED

Read aloud the following colors as fast as you can: STROOP.1

Now quickly read aloud the colors of the following words …
not the words themselves, but the colors in which the words are shown:

STROOP

Difficult isn’t it?  No matter how hard you concentrate, no matter how hard you focus, you will find that it is almost impossible to read the colors aloud without becoming confused.  The word patterns have become so strong in your brain that they are activated automatically whether you want them to be or not.

Now read the following paragraph.

“Aoccdrnig to rscheearch at Cmabridge Uinvervtisy, it deosn’t mttaer in waht oredr the litteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae.  The rset can be a ttoal mses and you can sitll raed it wouthit a porbelm.  Tihs is besauae ocne we laren how to raed we bgien to aargnre the lteerts in our mnid to see waht we epxcet to see.  The huamn mnid deos not raed ervey lteter by istlef, but preecsievs the wrod as a wlohe.  We do tihs ucnsoniuscoly wuithot tuhoght.”

Amazing, isn’t it?  How are you able to see and understand a group of jumbled letters as words? How can you find meaning in a mass of jumbled letters? Show this paragraph to any child   just learning to read and they will tell you that what you think are words is nonsense. This is because the word patterns in their brain have not yet become rigid.

The dominant factor in the way our minds work is the buildup of patterns that enable us to simplify and cope with a complex world. These patterns are based on our past experiences in life, education, and work that have been successful in the past. We look at 6 X 6 and 36 appears automatically without conscious thought. We brush our teeth in the morning, get dressed, drive to work without conscious thought because our thinking patterns enable us to perform routine tasks rapidly and accurately

But this same patterning makes it hard for us to come up with new ideas and creative solutions to problems, especially when confronted with unusual data. In our paragraph, our word patterns are so hard wired that even a small bit of information (the first and last letter of a word) activates the entire word pattern. We end up seeing what our brains expect to see instead of what is right before our eyes.

We are instructed in schools to think reproductively by memorizing formulae, systems, and methodologies that others have used successfully in the past. This instruction has created strong thinking patterns. When confronted with problems, these thinking patterns are activated with even a small bit of information and lead our thinking in a clearly defined direction toward something that has worked in the past for someone else, excluding all other approaches.

Think of your mind as a dish of jelly which has settled so that its surface is perfectly flat.  When information enters the mind, it self-organizes.  It is like pouring warm water on the dish of jelly with a teaspoon.  Imagine the warm water being poured on the jelly dish and then gently tipped so that it runs off.  After many repetitions of this process, the surface of the jelly would be full of ruts, indentations, and grooves.

New water (information) would start to automatically flow into the preformed grooves.   After a while, it would take only a bit of information (water) to activate an entire channel. This is the pattern recognition and pattern completion process of the brain.  Even if much of the information is out of the channel, the pattern will be activated.  The mind automatically corrects and completes the information to select and activate a pattern.

This is why when we sit down and try to will new ideas or solutions, we tend to keep coming up with the same-old, same-old ideas.  Information is flowing down the same ruts and grooves making the same-old connections producing the same old ideas over and over again.

Creativity occurs when we tilt the jelly dish and force the water (information) to flow into new channels and make new connections.  These new connections give you different ways to focus you attention and different ways to interpret whatever you are focusing on. These different ways of focusing your attention and different ways of interpreting what you are focusing on lead to new insights, original ideas and solutions.

You cannot will yourself to look at things in a different way, no matter how inspired you are to do so. To illustrate, following are two rows of parallel dots which are equal in length. Try to will yourself to see the rows of dots as unequal in length. No matter how hard you concentrate and how long you look at the dots, the two rows remain equal.

UNEVEN DOTS

However, if you change the way you look at the dots by combining the dots with two convergent straight lines, your perception of the dots changes. When you do that, the top row appears longer than the other one.

COMBINING DOTS.LINES

The rows are still equal (go ahead and measure them), yet, you are now seeing something different. Combining the dots with straight lines focused your attention in a different way and caught your brain’s processing routines by surprise. This provoked a different thinking pattern that changed your perception of the illustration and allowed you to see something that you could not otherwise see.

If one particular thinking strategy stands out for creative geniuses throughout history, it is the ability to provoke different thinking patterns by using creative thinking techniques that enable them to perceive conceptual analogical and metaphorical juxtapositions between dissimilar and unrelated subjects and information. 

Xiaohui Cui at the Oak Ridge National Laboratory in Tennessee immersed himself in the problem of a better way to organize information on the internet. He abstracted the principle of the problem to “how do things flock and flow.” He studied how things flock and flow in different domains. Then he made the analogical connection between how information flocks and flows on the internet and how birds of the same species flock and flow together.

The system he created mimics the ways birds of the same species congregate while flying. He created flocks of virtual “birds.” Each bird carries a document, which is assigned a string of numbers. Documents with a lot of similar words have number strings of the same length. A virtual bird will fly only with others of its own “species” or, in this case, documents with number strings of the same length. When a new article appears on the Internet, software scans it for words similar to those in existing articles and then files the document in an existing flock, or creates a new one.

This new web-feed tool will, whenever you go online, automatically update your browser with any new stories added to your favorite websites. It will also provide automatic updates from other websites, such as when new scientific papers are added to journals.

To get this idea, Xiaohui had to provoke a change in his thinking patterns about the internet. He did this by abstracting the principle of the problem (flocking and flowing) and immersed himself in searching in other domains for how things flock and flow. When he made the analogical connection between how birds flock and how information flocks, he was able to look at his problem with a new perspective. (Metaphorically, it was like placing two straight lines next to the dots in the illustration.)

The essence of creative thinking is a complex blending of elements of two or more different subjects, all of which involve guesswork rather than certainty. Perception is far more than the recognition of members of already-established categories–it involves the spontaneous manufacture of new categories.

 

 

………………….

To learn  about creative thinking techniques and how to get the ideas you need, read Michael’s books http://creativethinking.net/#sthash.SXV5T2cu.dpbs

 

 

 

 

 

 

 

 

 

CAN YOU SPOT THE SECOND TIGER?

tiger

Only 1% of people can spot the second tiger. These people have acute perceptive abilities. If you can’t find it, go to the end of this article for the answer.

Cognitive scientists understand the importance of perception and pattern recognition as a major component of creative thinking.  When you are committed and start to actively work on a problem that you are passionate about, you will start to notice more and more things that relate to what you are working on. With an infinite amount of stimuli constantly hitting our brains, we need the ability to filter that which is most relevant to us. And our mind is that filter. Often these connections can seem like coincidences, but cognitive scientists tell us it is simply that part of our brain that screens out information we are not interested in and focuses on the things that we can use. These connections give you different ways to look at information and different ways to focus on it.

George de Mestral was inspired to improve the zipper. He thought about the essence of zippers which is to fasten two separate pieces of fabric together. His question became “How do things fasten?” He became committed to the idea of inventing a better fastener and spent considerable time pondering how things fasten in other domains including nature.

One day when George was hunting birds with his Irish pointer, he traveled through some burdock thistles. The prickly seed burrs from the plants clung to his clothing and to his dog. While pulling off the burrs he noticed how they were removable yet easily reattached.

The burdock fascinated George and he imagined a fastener that mimicked a burdock. He studied the burrs under a microscope and discovered a hook system used by the burdock plant to migrate its seeds by attachment. The hooks could grab onto loops of thread or fur and migrate with the object it fastened itself to. This gave him the idea of creating a hook and loop fastener.

It was not logic that guided his thinking process but perception and pattern recognition between two totally unrelated subjects: zippers and bur docks. Logic dictates that bur docks are animate plants and zippers are inanimate man made objects that are totally unrelated and, therefore, any relationship between the two is to be excluded. It was George’s creative perception, not logic, that recognized the common factor between a burdock and a zipper that fastens, not logic.

George envisioned two fabrics that could attach in this manner with one having a surface covered with minuscule hooks and another with hoops. Most of the experts he visited did not believe hooks could be created on the surface of fabric. However, he found a weaver at a textile plant that was willing to work with him. George discovered that a multi filament yarn weaved from velvet or cotton terry cloth created a surface of hooped threads. To create hooks, George would partially cut the hoops so they would become hooks. There was a great deal of experimentation to get the right density, thread sizes and rigidity. He eventually weaved the hook-side yarn from nylon and invented Velcro.

Russian computer scientist, Mikhail Bongard, created a  remarkable set of visual pattern recognition problems to test one’s creative perception. The Bongard problems present two sets of relatively simple diagrams, say A and B. All the diagrams from set A have a common factor or attribute, which is lacking in all the diagrams of set B. The problem is to find, or to formulate, convincingly, the common   factor.

Below is an example of a Bongard problem. Test your perception and pattern recognition skills and try to solve the problem.   You have two classes of figures (A and B).  You are asked to discover some abstract connection that links all the various diagrams in A and that   distinguishes them from all the other diagrams in group B.

OVALS

One has to take chances that certain aspects of a given diagram matter, and others are irrelevant.  Perhaps shapes count, but not sizes — or vice versa.  Perhaps orientations count, but not sizes — or vice versa.  Perhaps curvature or its lack counts, but not location inside the box — or vice versa.  Perhaps numbers of objects but not their types matter — or vice versa.  Which types of features will wind up mattering and which are mere distractors.  As you try to solve the problem, you will find the essence of your mental activity is a complex interweaving of acts of abstraction and comparison, all of which involve guesswork rather than certainty.  By guesswork I mean that one has to take a chance that certain aspects matter and others do not.

Logic dictates that the essence of perception is the activity of dividing a complex scene into its separate constituent objects and attaching separate labels to the now separated parts of pre-established categories, such as ovals, Xs and circles as unrelated exclusive events.  Then we’re taught to think exclusively within a closed system of hard logic.In the above patterns, if you were able to discern the distinction between the diagrams, your perception is what found the distinction, not logic.  The distinction is the ovals are all pointing to the X in the A group, and the ovals area all pointing at the circles in the B group.

The following thought experiment is an even more difficult problem, because you are no longer dealing with recognizable shapes such as ovals, Xs, circles or other easily recognizable structures for which we have clear representations.  To solve this, you need to perceive subjectively and intuitively, make abstract connections, much like Einstein thought when he thought about the similarities and   differences between the patterns of space and time, and you need to consider the overall context of the problem.

BONGARD.DOT.NECK

A                                                           B

Again, you have two classes of figures (A and B) in the Bongard problem.  You are asked to discover some abstract connection that links all the various diagrams in A and that distinguishes them from all the other diagrams in group B.

SCROLL DOWN FOR ANSWER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANSWER: The rule is the “dots” in A are on the same side of the neck.

 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SECOND TIGER

tiger.2

 

Learn how to become a creative thinker. Review Michael Michalko’s books http://creativethinking.net/#sthash.SXV5T2cu.dpbs

 

 

 

 

A Creative-Thinking Technique to Use When Looking for Ideas  

 

ferris wheel

Suppose you are elected to host a singles elimination tennis tournament. You have one hundred and seventeen entrants. What is the minimum number of tennis matches that would have to be arranged for this number of entrants?

When faced with this problem most people draw diagrams showing the actual pairings in each match and the number of byes. Others try to work it out mathematically. In fact the answer is one hundred and sixteen matches and one can work this out at once without any complicated diagrams or math. To work it out, reverse your thinking from the winners of each match to the losers. Since there can only be one winner in a singles elimination tennis tournament, there must be one hundred and sixteen losers. Each loser can only lose once so there must be one hundred and sixteen matches.

The assumption in the tennis problem is to focus on the winners and not the losers. Reversing your thinking leads us to consider the losers instead of the winners and the problem is rapidly solved. Reversing the way you look at things encourages you to consider things that may not be considered at all. During the middle Ages, a number of people in a French village were dying from the Black Plague. They discovered that they had buried some people who were still alive by mistake. Their problem as they framed it was how to make sure they did not bury people who were still alive. One imaginative soul solved the problem by reversing it. He proposed making sure people were dead before they were buried by putting a stake in the coffin lid above the heart. Reversing their problem reversed their viewpoint.

Reversals break your existing patterns of thought and provoke new ones. You take things as they are and then turn them around, inside out, upside down, and back to front to see what happens. In the illustration, Figure A shows two lines of equal length bounded by arrow-like angles. In Figure B, the arrow-like angles are reversed on one of the lines, which changes our perception and creates the illusion of the line being shorter. It’s not shorter, measure it and you will find it is still equal in length. The lines haven’t changed, your perception of them has.

LINES (5)

                                            A                                                             B

In figure A the angles outward of the lines seem to open up a potentially limited space. Reversing the angles on the second line in B seems to close off and limit the area, which changes your perception of the length of the lines.

A simple reversal of angles dramatically changes what we see in the illustration. The lines in B are the same length as the lines in A. Prove it to yourself by measuring the lines with a ruler. By changing the angles on one line we have changed the way we perceive the length of the lines in the illustration. The same perceptual changes occur when we reverse our conventional thinking patterns about problems and situations.

When Henry Ford went into the automobile business, the conventional thinking was that you had to “bring people to the work.” He reversed this to “bring the work to the people” and accomplished this by inventing the assembly line. When Al Sloan became CEO of General Motors, the common assumption was that people had to pay for a car before they drove it. He reversed this to you can drive the car before you pay for it and, to accomplish this, he pioneered the idea of installment buying.

Years back, chemists had great difficulty putting a pleasant-tasting coating on aspirin tablets. Dipping tablets led to uneven and lumpy coats. They were stumped until they reversed their thinking. Instead of looking for ways to put something “on” the aspirin, they looked for ways to take something “off” the aspirin. This reversal led to one of the newer techniques for coating pills. The pills are immersed in a liquid which is passed onto a spinning disk. The centrifugal force on the fluid and the pills causes the two to separate, leaving a nice, even coating around the pill.

Physicist and philosopher David Bohm believed geniuses were able to think different thoughts because they could tolerate ambivalence between opposites or two incompatible subjects. Thomas Edison’s breakthrough invention of a practical system of lighting involved wiring his circuits in parallel and of using high-resistance filaments in his bulbs, two things that were not considered possible by conventional thinkers, in fact were not considered at all because of an assumed incompatibility. Because Edison could tolerate the ambivalence between the two incompatible things, he could see the relationship that led to his breakthrough.

Mathematician-philosopher, Bertrand Russell, once astounded his colleagues by demonstrating that in mathematical argument, every alternative leads to its opposite. You can provoke new ideas by considering the opposite of any subject or action. When bioengineers were looking for ways to improve the tomato, they identified the gene in tomatoes that ripens tomatoes. They thought that if the gene hastens ripening (black arrowhead), maybe they could use the gene to slow down the process by reversing it (white arrowhead). They copied the gene, put it in backwards and now the gene slows down ripening, making vine ripened tomatoes possible in winter.

REVERSING ASSUMPTIONS. Suppose you want to start a new restaurant and are having difficulty coming up with ideas. To initiate ideas, try the following reversals:

  1. List all your assumptions about your subject.

EXAMPLE:  Some common assumptions about restaurants are:

Restaurants have menus, either written, verbal or implied.

Restaurants charge money for food.

Restaurants serve food.

  1. Reverse each assumption. What is its opposite?

EXAMPLE: The assumptions reversed would be:

  1. Restaurants have no menus of any kind
  2. Restaurants give food away for free.
  3. Restaurants do not serve food of any kind.
  4. Ask yourself how to accomplish each reversal. How can we start a restaurant that has no menu of any kind and still have a viable business?

EXAMPLES:

  1. A restaurant with no menu. IDEA: The chef informs each customer what he bought that day at the meat market, vegetable market and fish market. He asks the customer to select items that appeal and he will create a dish with those items, specifically for that customer.
  2. A restaurant that gives away food. IDEA: An outdoor cafe that charges for time instead of food. Use a time stamp and charge so much for time (minutes) spent. Selected food items and beverages are free or sold at cost.
  3. A restaurant that does not serve food. IDEA: Create a restaurant with a unique decor in an exotic environment and rent the location. People bring their own food and beverages (picnic baskets, etc.) and pay a service charge for the location.
  4. Select one and build it into a realistic idea. In our example, we decide to work with the “restaurant with no menu” reversal. We’ll call the restaurant “The Creative Chef.” The chef will create the dish out of the selected ingredients and name the dish after the customer. Each customer will receive a computer printout of the recipe the chef named after the customer.

IF FAMOUS ARTISTS CAN SELL CONSUMER GOODS WITH THEIR NAME, WHY CAN’T UNKNOWN ARTISTS SELL CONSUMER GOODS TO BECOME FAMOUS ARTISTS

Reversals destabilize your conventional thinking patterns and frees information to come together in provocative new ways. In San Francisco, there was a tight-knit community of poor artists who would organize or participate in a variety of gallery shows. It was always a lot of fun, but there was a problem. No one bought their art.

It is usual for famous artists to dabble in consumer goods that are more accessible to a wider audience. One of the artists suggested they reverse that formulation to selling consumer goods to draw attention to the art of the unknown artists. They decided, in addition to paintings, their exhibition include wallets. Wallets were selected because they are carried around, not hung on a wall at home. The wallets were all the same (stitched together vinyl and plastic, folding 4 by 4 inches. Each artist printed his or her design on a set of a dozen wallets, which were priced at $20 each and each contained an artist bio card.

It was a tremendous success. They were a media hit. They created a company and expanded their line to include a canvas artist bag modeled on a messenger bag, and again imprinted with designs from the artists. In addition, they were soon approached by various bands and musical groups to create wallets for their various fans. The company is becoming a prestigious destination for nationally-recognized artists and designers who want the company to carry their designs. In line with its original goal the company has helped a variety of artists and designers receive national attention and awards for their art.  ………………………………………………………………………………………………

Read Michael Michalko’s THINKERTOYS for a variety of practical creative-thinking techniques to help you get the ideas you need to improve your business and personal lives.

https://www.amazon.com/Thinkertoys-Handbook-Creative-Thinking-Techniques-2nd/dp/1580087736/ref=sr_1_1?ie=UTF8&qid=1487185063&sr=8-1&keywords=thinkertoys

 

CREATIVE THINKING TECHNIQUE: THE EXQUISITE CORPSE

horses or woman

  It is not possible to think unpredictably by looking harder and longer in the same direction. When your attention is focused on a subject, only a few patterns dominate your thinking. These patterns produce predictable ideas no matter how hard you try. In fact, the harder you try, the stronger the same patterns become. If, however, you change your focus and combine your subject with something that is not related, different, unusual patterns are activated. 

Try an experiment. Pick eight random words (or use the following words) and give the list to someone or to a small group (for example: flower pot, baby, glass, grasshopper, coffee pot, box, toast and garage). Ask them to divide the words into two groups without giving them any rationale for the division. You’ll discover that people will come up with some very creative classifications. They’ll group them according to “words with the letter,” “things that touch water,” “objects made in factories,” and so on. No one ever says there is no connection, they invent them. 

Though we seldom think about it, making random connections in such a manner are conceptual creative acts. Making random connections were popular techniques used by Jackson Pollock and other Surrealist artists to create conceptual combinations in art. Artists in a group would take turns, each contributing any word that occurred to them in a “sentence” without seeing what the others had written. The resulting sentence would eventually become a combination of concepts that they would study and interpret hoping to get a novel insight or a glimpse of some deeper meaning. The technique is named “The Exquisite Corpse” after a sentence which happened to contain those words. 

BLUEPRINT 

Have the group bounce ideas and thoughts about the subject off each other for five to ten minutes. 

  • Then, ask the participants to think about what was discussed and silently write one word that occurs to them on a card.
  • Collect the cards have the group combine the words into a sentence (words can be added by the group to help the sentence make sense).
  • Then invite the group to study the final sentence and build an idea or ideas from it. 

An Alzheimer’s organization planned to have an auction to raise money for their cause. They planned an elaborate, sophisticated evening and looked for unusual items they could auction. They tried the “exquisite corpse” technique. Some of the words they came up with were people, cruises, creative, furniture, charity, designer, custom, art, thin air, and celebrities. One of the connections was: create—-art—-thin air. 

This triggered their idea which was the sensation of the auction. They sold an idea for an artwork that doesn’t exist. They talked a well-known conceptual artist into describing an idea for an artwork. The idea was placed in an envelope and auctioned off for $5,000. Legal ownership was indicated by a typed certificate, which specified that the artwork (10, 0000 lines, each ten inches long, covering a wall) be drawn with black and red pencils. The artist and the owner will have one meeting where the artist will describe his vision for the painting with the owner. The owner has the right to reproduce this piece as many times as he likes.

MICHAEL MICHALKO author of THINKERTOYS (HANDBOOK OF CREATIVE THINKING  TECHNIQUES.

 http://www.amazon.com/dp/1580087736/ref=cm_sw_r_tw_dp_qucvxb0A4HCF1 … via @amazon

 

 

What Flies and Bees Can Teach Us About Problem Solving?

bees

 

If you place in a bottle half a dozen bees and the same number of flies, and lay the bottle down horizontally, with its base to the window, you will find that the bees will persist, until they die of exhaustion or hunger, in their endeavor to discover an issue through the glass; while the flies, in less than two minutes, will all have sallied forth through the neck on the opposite side.

Scientists believe that it is the bees’ knowledge of light; it is their very intelligence that is their undoing in this experiment. They evidently imagine that the escape from every prison must be there when the light shines clearest; and they act in accordance, and persist in what seems to be a logical action. To them glass is a supernatural mystery they never have met in nature; they have had no experience of this suddenly impenetrable atmosphere; and the greater their intelligence, the more inadmissible, more incomprehensible, will the strange obstacle appear and the greater will be their persistence to penetrate the bottom of the bottle.

Whereas the feather-brained flies, careless of logic, disregarding the call of the light, flutter wildly, hither and thither, hitting the bottom and walls of the glass through trial and error until they find the opening to freedom. It is by pursuing every imaginable alternative do the flies escape while the bees perish because they believe the light is the only way out because, after all, generations of bees were successful following the light. Here the good fortune that often waits on the simple, who find salvation where the wiser will perish because they feel there is only the one way they know.

The bees in the experiment remind me of the paradox of expertise. It seems that the more expert one becomes in an area of specialization, the less creative and innovative that person becomes. The paradox is that people who know more, see less; and the people who know less, see more. Apple Computer Inc. founder Steve Jobs attempted without success to get Atari and Hewlett-Packard interested in his and Steve Wozniak’s personal computer. As Steve recounts, “So we went to Atari and said, ‘Hey, we’ve got this amazing thing, even built with some of your parts, and what do you think about funding us? Or we’ll give it to you. We just want to do it. Pay our salary; we’ll come work for you.’ And their experts laughed and said, ‘No.’ So then we went to Hewlett-Packard, and they said, ‘Hey, we don’t need you. Go to college and then come back and apply for a job.”

What is it that freezes the expert’s thought and makes it difficult to consider new things that deviate from their theories? Ken Olson, president, chairman and founder of Digital Equipment Corp., thought the idea of a personal computer absurd, as he said, “there is no reason anyone would want a computer in their home.” Robert Goddard, the father of modern rocketry, was ridiculed by every scientist for his revolutionary liquid-fueled rockets. Even the New York Times chimed in with an editorial in 1921 by scientists who claimed that Goddard lacked even the basic knowledge ladled out daily in high school science classes. Pierrre Pachet a renowned physiology professor and expert declared, “Louis Pasteur’s theory of germs is ridiculous fiction.”

It seems that if an expert experiences any strain in imagining a possibility, they quickly conclude it’s impossible. This principle also helps explain why evolutionary change often goes unnoticed by the expert. The greater the commitment of the expert to their established view, the more difficult it is for the expert to do anything more than to continue repeating their established view. It also explains the phenomenon of a beginner who comes up with the breakthrough insight or idea that was overlooked by the experts who worked on the same problem for years. Think, for a moment, about Philo Farnsworth who invented television when he was twelve years old while he was working on his father’s farm.

Imagine 12 year old Philo Farnsworth tilling a potato field back and forth with a horse-drawn harrow in Rigby, Idaho while at the same time thinking about what his chemistry teacher taught him about the electron and electricity. Philo conceptually blended tilling a potato field with the attributes of electronic beams and realized that an electron beam could scan images the same way farmers till a field, row by row or read a book, line by line. Amazingly, this was 1921 and a 12 year-old Farnsworth conceived the idea of television.

We are educated to think reproductively like the bees in the experiment. Whenever we are confronted with a problem, we fixate on something in our past that has worked before and we apply it to the problem. If it does not work, we conclude it’s not possible to solve. The flies resemble productive thinkers as they fly hither and thither exploring every possibility and through trial and error find the way to safety. The lesson to us is to always approach a problem on its own terms and to consider all alternatives including the least obvious ones.

Michael Michalko creativity expert and author of books on creative thinking. http://creativethinking.net/#sthash.SXV5T2cu.dpbs