Posts Tagged ‘create creativethinking’

If You Do Nothing, You Are Nothing

i am what i do

All art is a reaction to the first line drawn. Unless the artist sits in front of the canvas and paints, there can be no art. Unless the writer sits down and starts to type, there can be no book. Unless the musician plays their instrument, there can be no music. Unless the sculptor begins to chip away at the marble, there can be no sculpture. Unless the explorer begins the journey, there can be no discovery. It is the same with everything in life, even civilizations; unless one acts, nothing is created or discovered.

What you think or believe is of no consequence. The only thing of consequence is what you do. Read Michael Michalko’s article about taking action at:


Combine What Exists Into Something That Has Never Existed Before


In his book Scientific Genius, psychologist Dean Keith Simonton of the University of California at Davis suggests that geniuses are geniuses because they form more novel combinations than the merely talented. He suggests that, in a loose sense, genius and chance are syn­onymous. His theory has etymology behind it: cogito—”I think”—originally connoted “shake together”; intelligo, the root of intelligence, means to “select among.” This is a clear, early intuition about the utility of permitting ideas and thoughts to randomly combine with each other and the utility of selecting from the many the few to retain.

Because geniuses are willing to entertain novel combinations, they are able to discard accepted ideas of what is possible and imagine what is actually possible. In 1448 Johannes Gutenberg combined the mecha­nisms for pressing wine and punching coins to produce movable type, which made printing practical. His method of producing movable type endured almost unchanged for five centuries. The laws of heredity on which the modern science of genetics is based are the result of the work of Gregor Mendel, who combined mathematics and biology to create this new science. Thomas Edison’s invention of a practical system of lighting involved combining wiring in parallel circuits with high-resis­tance filaments in his bulbs, two things that were not considered possi­ble.

Imagine, for a moment, that thought is water. When you are born, your mind is like a glass of water. Your thinking is inclusive, clear, and fluid. All thoughts intermingle and combine with each other and make all kinds of connections and associations. This is why children are spontaneously creative.


In school you are taught to define, label, and segregate what you learn into separate categories. The various categories are kept separate and not allowed to touch each other, much like ice cubes in a tray. Once something is learned and categorized, your thoughts about it become frozen. For example, once you learn what a can opener is, whenever someone mentions “can opener” you know exactly what it is.

You are taught, when confronted with a problem, to examine the ice cube tray and select the appropriate cube. Then you take the cube and put it in a glass, where your thinking heats and melts it. For example, if the problem is to “improve the can opener,” the glass will contain all you have learned about can openers, and nothing more. You are thinking exclusively, which is to say you are thinking only about what you have learned about the can opener. No matter how many times the water is stirred, you end up creating, at best, a marginal improvement.

Now if you take another cube (e.g., vegetables) and put it in the same glass with the can-opener cube, your thinking will heat and melt both together into one fluid. Now when you stir the water, more associations and connections are made and the creative possibilities become immensely greater. The vegetable cube, once blended with the can opener cube, might inspire you to think of how vegetables open in nature. For example, when pea pods ripen, a seam weakens and opens, freeing the peas. This might inspire you to come up with novel ideas. You could, for example, manufacture cans with a weak seam that can be pulled to open the can. You cannot get this kind of novel idea using your conventional way of thinking.

What happens when you think simultaneously, in the same mental space, about a showerhead and a telescope orbiting the earth? When the Hubble telescope was first launched into space, scientists were unable to focus it. It could be salvaged only by refocusing it using small, coin-shaped mirrors.

The problem was how to deliver and insert the mirrors precisely into the right location. The right location was in a light bundle behind the main mirror. The NASA experts who worked on the problem were not able to solve it, and the multi-million dollar Hubble seemed doomed.

NASA engineer James Crocker was attending a seminar in Germany when he found out about the problem. He worked on it all day. Tired, he stepped into the shower in his hotel room. The European-style shower included a shower-head on an arrangement of adjustable rods. While manipulating the shower-head, Crocker suddenly realized that similar articulated arms bearing coin-shaped mirrors could be-extended into the light bundle from within a replacement axial instrument by remote control. Blending the Hubble telescope and the shower-head in the same mental space simultaneously created this remarkable solution.

Crocker was startled by his sudden realization of the solution that was immensely comprehensive and at the same time immensely detailed. As Crocker later said “I could see the Hubble’s mirrors on the shower head.” Crocker solved it by thinking unconventionally by forcing connections between two remotely different subjects.

Look at the following illustration A of the rectangle and circle. Both are separate entities. Now look at the extraordinary effect they have when blended together in illustration B. We now have something mysterious, and it seems to move. You can get this effect only by blending the two dissimilar objects in the same space.


Combining a rectangle with the circle changed our perception of the two figures into something extraordinary. In the same way, combining information in novel ways increases your perceptual possibilities to create something original.

Creativity in all domains, including science, technology, medicine, the arts, and day-to-day living, emerges from the basic mental operation of conceptually blending dissimilar subjects. When analyzed, creative ideas are always new combinations of old ideas. A poet does not generally make up new words but, instead, puts together old words in a new way. The French poet Paul Valery is quoted by Jacques Hadamard in Jacque Hadamard: a universal mathematician by T.O. Shaposhnikova as saying “It takes two to invent anything. The one makes up combinations; the other chooses, recognizes what he wishes and what is important to him in the mass of things which the former has imparted to him.” Valery related that when he writes poetry he used two thinking strategies to invent something new in writing poetry. With one strategy, he would make up combinations; and with the other he would choose what is important.

Think for a moment about a pinecone. What relationship does a pinecone have with the processes of reading and writing? In France, in 1818, a nine-year-old boy accidentally blinded himself with a hole puncher while helping his father make horse harnesses. A few years later the boy was sitting in the yard thinking about his inability to read and write when a friend handed him a pinecone. He ran his fingers over the cone and noted the tiny differences between the scales. He conceptually blended the feel of different pinecone scales with reading and writing, and realized he could create an alphabet of raised dots on paper so the blind could feel and read what was written with it. In this way Louis Braille opened up a whole new world for the blind. Braille made a creative connection between a pinecone and reading. When you make a connection between two unrelated subjects, your imagination will leap to fill the gaps and form a whole in order to make sense of it.

Just as conceptual blending allows information to intermingle in the mind of the individual, when people swap thoughts with others from different fields it creates new, exciting thinking patterns for both. As Brian Arthur argues in his book The Nature of Technology, nearly all technologies result from combinations of other technologies, and new ideas often come from people from different fields combining their thoughts and things. One example is the camera pill, invented after a conversation between a gastroenterologist and a guided missile designer.

Suppose you are watching a mime impersonating a man taking his dog out for a walk. The mime’s arm is outstretched as though holding the dog’s leash. As the mime’s arm is jerked back and forth, you “see” the dog straining at the leash to sniff this or that. The dog and the leash become the most real part of the scene, even though there is no dog or leash. In the same way, when you make connections between your subject and something that is totally unrelated, your imagination fills in the gaps to create new ideas. It is this willingness to use your imagination to fill in the gaps that produces the unpredictable idea. This is why Einstein claimed that imagination is more important than knowledge.

Michael Michalko is a highly acclaimed expert on creative thinking and conducts seminars and think tanks worldwide. He has published several books which contain creative thinking techniques and are available at Amazon, Barnes&Noble, and major bookstores worldwide.

Why Do People Who Know More See Less?


At one time in history, the Swiss dominated the watch industry. The Swiss themselves invented the electronic watch movement at their research institute in Neuchatel, Switzerland. It was rejected by every Swiss watch manufacturer. Based on their past experiences in the industry, they believed this couldn’t possibly be the watch of the future. After all, it was battery powered, did not have bearings or a mainspring and almost no gears. Seiko took one look at this invention that the Swiss manufacturers rejected and took over the world watch market.

You no doubt have noticed that the biggest innovative breakthroughs seem always to be made by people who have far less information and know less than the experts in the field. Einstein, for example, was by no means the most knowledgeable theoretical physicist of the 20th century. He often displayed a profound ignorance about certain aspects of his field. In contrast, many of his contemporaries had acquired much more information, gone to better schools, had better teachers, only to find they were unable to offer the world one single innovative idea.

Why is it that people who know more, see less? Consciously or unconsciously, we are anchored to our first impressions unless we actively change the way we look at the subject. Chester Carlson invented xerography in 1938. He tried to sell his electronic copier to every major corporation in the U.S. and was turned down emphatically by every single one. Because carbon paper was so cheap and plentiful no one, they said, would buy an expensive copy machine. Their thinking process was anchored by their initial impression of the cost of a copier versus the cost of carbon paper. This impression closed off all other lines of thought. It was Xerox, a new corporation that changed the perception of cost by leasing the machines.

Apple Computer Inc. founder Steve Jobs attempted without success to get Atari and Hewlett-Packard interested in his and Steve Wozniak’s personal computer. As Steve recounts, “So we went to Atari and said, ‘Hey, we’ve got this amazing thing, even built with some of your parts, and what do you think about funding us? Or we’ll give it to you. We just want to do it. Pay our salary, we’ll come work for you.’ And their experts laughed and said, ‘No.’ So then we went to Hewlett-Packard, and they said, ‘Hey, we don’t need you. You’re a college dropout. Go back and get your degree.”

What is it that freezes the expert’s thought and makes it difficult to consider new things that deviate from their theories? The figure below illustrates a series of progressively modified drawings that change almost imperceptibly from a man into a woman. When test subjects are shown the entire series of drawings one by one, their perception of this intermediate drawing is biased according to which end of the series they started from. Test subjects who start by viewing a picture that is clearly a man are biased in favor of continuing to see a man long after an “objective observer” (an observer who has seen only a single picture) recognizes that the man is now a woman. Similarly, test subjects who start at the woman end of the series are biased in favor of continuing to see a woman.

man to woman - Copy (2)

Once an observer has formed an image–that is, once he or she has developed an expectation concerning the subject being observed–this influences future perceptions of the subject. Similarly, people who have a lot of experience in a particular field develop hypotheses about what is possible and what is not. This hypothesis biases their judgement about new ideas.

Ken Olson, president, chairman and founder of Digital Equipment Corp., thought the idea of a personal computer absurd, as he said, “there is no reason anyone would want a computer in their home.” Robert Goddard, the father of modern rocketry, was ridiculed by every scientist for his revolutionary liquid-fueled rockets. Even the New York Times chimed in with an editorial in 1921 by scientists who claimed that Goddard lacked even the basic knowledge ladled out daily in high school science classes. Pierrre Pachet a renowned physiology professor and expert declared, “Louis Pasteur’s theory of germs is ridiculous fiction.”

If we experience any strain in imagining a possibility, we quickly conclude it’s impossible. This principle also helps explain why evolutionary change often goes unnoticed by the expert. The greater the commitment of the expert to their established view, the more difficult it is for the expert to do anything more than to continue repeating their established view. It also explains the phenomenon of a beginner who comes up with the breakthrough insight or idea that was overlooked by the experts who worked on the same problem for years.

Think, for a moment, about Federal Express and its founder Fred Smith. The US Postal Service, UPS and the airline industry tried to come up with an overnight delivery system of packages. They all decided it was not possible to do profitably. This solidified, over many years, into the established view. Fred Smith, an outlier, ignored the establishment and created an overnight system based on the hub and wheel concept for moving money and information. Still every delivery expert in the U.S. doomed Federal Express to failure because they said people will not pay a fancy price for speed and reliability. Fred smiled and said what they are willing to pay for is “peace of mind.” FedEx has become the model for delivery systems all over the world.

If you survey the history of science, it is apparent that most individuals who have created radical innovations did not do so simply because they knew more than others. Charles Darwin is a good case in point. He came back from the Beagle voyage and displayed his famous Galapagos specimens in London. Within six months of his return, most of the top naturalists in Britain had seen Darwin’s Galapagos finches and reptiles, and hence the crucial evidence that converted Darwin to evolution (and that we now consider the textbook case of evolution in action). None saw the connections.

John Gould, who was one of the greatest ornithologists of the nineteenth century, knew far more about Darwin’s Galapagos birds than Darwin did. Gould corrected numerous mistakes that Darwin had made during the Beagle voyage, including showing Darwin that a warbler was, in fact, a warbler finch and other birds that Darwin had not recognized as being part of the same finch family. Darwin was stunned by this and other crucial information that he received from Gould in March of 1837, and Darwin immediately became an evolutionist.

The strange thing is that Gould did not. He remained a creationist even after The Origin of Species was published. Hence the man who knew more saw less, and the man who knew less saw more. This is a classic example of the expert (John Gould) looking at nature for years and not being able to make the connections because of his long held hypothesis. Whereas Darwin looking at nature with no hypothesis made the connection immediately.

Consequently, Charles Darwin who knew less saw more than John Gould who knew more but saw less.

Michael Michalko

Change the way you look at things and the things you look at change

One of the many ways in which our mind attempts to make life easier is to solve the first impression of the problem that it encounters.  Like our first impressions of people, our initial perspective on problems and situations are apt to be narrow and superficial.  We see no more than we’ve been conditioned to see — and stereotyped notions block clear vision and crowd out imagination.  This happens without any alarms sounding, so we never realize it is occurring. The illustration below appears to have no meaning.  If you continue looking at it from your initial perspective, you will see nothing.  If, however, you step back from your computer and view the illustration from a distance or from an angle, you will see a message.

bad eyes

When Leonardo daVinci finished a painting, he would always look at it from a far distance to get a different perspective.  By distancing yourself from the pattern, you changed your perception of it, thereby allowing yourself to see something that you could not otherwise see. 

Our perceptual positions determine how we view things.  In the illustration below, if you sit still and focus on the dot in the center, you see two broken line circles.  However, if you change your perspective by moving your head backwards and forward, something strange will happen.

moving circles


Michael Michalko





We have not been taught how to think for ourselves, we have been taught what to think based on what past thinkers thought. We are taught to think reproductively, not productively. What most people call thinking is simply reproducing what others have done in the past. We have been trained to seek out the neural path of least resistance, searching out responses that have worked in the past, rather than approach a problem on its own terms.

Educators discourage us from looking for alternatives to prevailing wisdom. When confronted with a problem, we are taught to analytically select the most promising approach based on past history, excluding all other approaches and then to work logically within a carefully defined direction towards a solution. Instead of being taught to look for possibilities, we are taught to look for ways to exclude them. This kind of thinking is dehumanizing and naturalizes intellectual laziness which promotes an impulse toward doing whatever is easiest or doing nothing at all. It’s as if we entered school as a question mark and graduated as a period.

Once when I was a young student, I was asked by my teacher, “What is one-half of thirteen?” I answered six and one half or 6.5. However, I exclaimed there are many different ways to express thirteen and many different to halve something. For example, you can spell thirteen, then halve it (e.g., thir/teen). Now half of thirteen becomes four (four letters in each half). Or, you can express it numerically as 13, and now halving 1/3 gives you 1 and 3. Another way to express a 13 is to express it in Roman numerals as XIII and now halving XI/II gives you XI and II, or eleven and two. Consequently one-half of thirteen is now eleven and two. Or you can even take XIII, divide it horizontally in two (XIII) and half of thirteen becomes VIII or 8.

My teacher scolded me for being silly and wasting the class’s time by playing games. She said there is only one right answer to the question about thirteen. It is six and one-half or 6.5. All others are wrong. I’ll never forget what she said “When I ask you a question, answer it the way you were taught or say you don’t know. If you want to get a passing grade, stop making stuff up.”

When we learn something, we are taught to program it into our brain and stop thinking about or looking for alternatives. Over time these programs become stronger and stronger, not only cognitively but physiologically as well. To get a sense of how strong these programs are, try solving the following problem.

Even when we actively seek information to test our ideas to see if we are right, we usually ignore paths that might lead us to discover alternatives. Following is an interesting experiment, which was originally conducted by the British psychologist Peter Wason that demonstrates this attitude. Wason would present subjects with the following triad of three numbers in sequence.

2       4       6

He would then ask subjects to write other examples of triads that follow the number rule and explain the number rule for the sequence. The subjects could ask as many questions as they wished without penalty.

He found that almost invariably most people will initially say, “4, 6, 8,” or “20, 22, 24,” or some similar sequence. And Watson would say, yes, that is an example of a number rule. Then they will say, “32, 34, 36″ or “50, 52, 54″ and so on– all numbers increasing by two. After a few tries, and getting affirmative answers each time, they are confident that the rule is numbers increasing by two without exploring alternative possibilities.

Actually, the rule Wason was looking for is much simpler– it’s simply numbers increasing. They could be 1, 2, 3 or 10, 20, 40 or 400, 678, 10,944. And testing such an alternative would be easy. All the subjects had to say was 1, 2, 3 to Watson to test it and it would be affirmed. Or, for example, a subject could throw out any series of numbers, for example, 5, 4, and 3 to see if they got a positive or negative answer. And that information would tell them a lot about whether their guess about the rule is true.

The profound discovery Wason made was that most people process the same information over and over until proven wrong, without searching for alternatives, even when there is no penalty for asking questions that give them a negative answer. In his hundreds of experiments, he, incredibly, never had an instance in which someone spontaneously offered an alternative hypothesis to find out if it were true. In short, his subjects didn’t even try to find out if there is a simpler or even, another, rule.

On the other hand, creative thinkers have a vivid awareness of the world around them and when they think, they seek to include rather than exclude alternatives and possibilities. They have a “lantern awareness” that brings the whole environment to the forefront of their attention. So, by the way, do children before they are educated. This kind of awareness is how you feel when you visit a foreign country; you focus less on particulars and experience everything more globally because so much is unfamiliar.

I am reminded of a story about a student who protested when his answer was marked wrong on a physics degree exam at the University of Copenhagen. The imaginative student was purportedly Niels Bohr who years later was co-winner of the Nobel Prize for physics.

In answer to the question, “How could you measure the height of a skyscraper using a barometer?” he was expected to explain that the barometric pressures at the top and the bottom of the building are different, and by calculating, he could determine the building’s height. Instead, he answered, “You tie a long piece of string to the neck of the barometer, then lower the barometer from the roof of the skyscraper to the ground. The length of the string plus the length of the barometer will equal the height of the building.

This highly original answer so incensed the examiner that the student was failed immediately. The student appealed on the grounds that his answer was indisputably correct, and the university appointed an independent arbiter to decide the case.

The arbiter judged that the answer was indeed correct, but did not display any noticeable knowledge of physics. To resolve the problem it was decided to call the student in and allow him six minutes in which to provide a verbal answer that showed at least a minimal familiarity with the basic principles of physics.

For five minutes the student sat in silence, forehead creased in thought. The arbiter reminded him that time was running out, to which the student replied that he had several extremely relevant answers, but couldn’t make up his mind which to use. On being advised to hurry up the student replied as follows:

“Firstly, you could take the barometer up to the roof of the skyscraper, drop it over the edge, and measure the time it takes to reach the ground. The height of the building can then be worked out from the formula H = 0.5g x t squared. But bad luck on the barometer.”

“Or if the sun is shining you could measure the height of the barometer, then set it on end and measure the length of its shadow. Then you measure the length of the skyscraper’s shadow, and thereafter it is a simple matter of proportional arithmetic to work out the height of the skyscraper.”

“But if you wanted to be highly scientific about it, you could tie a short piece of string to the barometer and swing it like a pendulum, first at ground level and then on the roof of the skyscraper. The height is worked out by the difference in the gravitational restoring force T =2 pi sqr root (I /9).”

“Or if the skyscraper has an outside emergency staircase, it would be easier to walk up it and mark off the height of the skyscraper in barometer lengths, then add them up.”

“If you merely wanted to be boring and orthodox about it, of course, you could use the barometer to measure the air pressure on the roof of the skyscraper and on the ground, and convert the difference in millibars into feet to give the height of the building.”

“But since we are constantly being exhorted to exercise independence of mind and apply scientific methods, undoubtedly the best way would be to knock on the janitor’s door and say to him ‘If you would like a nice new barometer, I will give you this one if you tell me the height of this skyscraper’.”

The obvious moral here is that education should not consist merely of stuffing students’ heads full of information and formulae to be memorized by rote and regurgitated upon demand, but of teaching students how to think and solve problems using whatever tools are available. In the mangled words of a familiar phrase, students should be educated in a way that enables them to figure out their own ways of catching fish, not simply taught a specific method of fishing.



Visit Michael Michalko’s creative thinking website: